Programming in C/C++: A Hands-on Introduction

Shuyue lJia
Ph.D. Student
Boston University

Feb. 1st, 2025

Department of Electrical and Computer Engineering BOSTON
Boston University UNIVERSITY

Programming in C/C++: A Hands-on Introduction

Coding Principle 1:
Practice makes perfect.

Department of Electrical and Computer Engineering BOSTON
Boston University UNIVERSITY

Programming in C/C++: A Hands-on Introduction

Coding Principle 2:
Always follow the standards.

Reference: https://goodle.qgithub.io/stylequide/

Department of Electrical and Computer Engineering

Boston University

https://google.github.io/styleguide/

Programming in C/C++: A Hands-on Introduction

Coding Principle 3:
The beauty is in simplicity.

Department of Electrical and Computer Engineering BOSTON
Boston University UNIVERSITY

Programming in C/C++: A Hands-on Introduction

Outline

= The Bigger Picture

= Types of C files

= C Program Structure

= Syntax of C

= C++: An Extension to the C Language

= Resources

Department of Electrical and Computer Engineering BOSTON
Boston University UNIVERSITY

Programming in C/C++: A Hands-on Introduction

Part 1 — The Bigger Picture

High-level swap(int v[], int k)
language {int temp;

program temp = v[k];

(in C) vlk] = v[k+11;

v[k+1] = temp;
}

Assembly swap:

language multi $2, $5.,4
program add $2, $4,%2
(for MIPS) Tw $15, 0($2

SW $16, 0($2
SW $15, 4(%$2
jr $31

)
Tw $16, 4(8$2)
)
)

Assembler

Binary machine 00000000101000100000000100011000

language 00000000100000100001000000100001
program 10001101111000100000000000000000
(for MIPS) 10001110000100100000000000000100

10101110000100100000000000000000
10101101111000100000000000000100
00000011111000000000000000001000

Image by courtesy of Patterson and Hennessy

>

C program: compiled into assembly language and then
assembled into binary machine code

Compiler: The compiler transforms the C program into an
assembly language program, a symbolic form of what the
machine understands.

Assembler: The assembler turns the assembly language
program into an object file (symbol table), a combination
of machine language instructions, data, and information

needed to place instructions properly in memory.

Credits: David Patterson and John Hennessy, Computer Organization and Design,
Fifth Edition: The Hardware/Software Interface, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

Programming in C/C++: A Hands-on Introduction

Part 1 — The Bigger Picture

Cprogram | -~ gnd .h » Linker: combines independently

assembled machine language programs

and resolves all undefined labels into an

Assembly language program | g

IIIIIIIIIIIIIII\!I_I_IIIIIIIIIII
@ executable file (binary machine code).
» Loader: A systems program that places

Object: Machine language module | | Object: Library routine (machine language)
e N .a (statically) an object program in the main memory
H - s0 (dynamically) so that it is ready to execute.
Executable: Machine language program out

» Detect changes at the file level, only

recompiling the modified . c file.

Memory Credits: David Patterson and John Hennessy, Computer Organization and
Design, Fifth Edition: The Hardware/Software Interface, Morgan Kaufmann

Image by courtesy of Patterson and Hennessy Publishers Inc., San Francisco, CA, USA.

Programming in C/C++: A Hands-on Introduction

Part 2 — Types of C files

1 #ifndefiMYHEADER_H { Name of your > myheader.h: header file, containing
#defineiMYHEADER H : header file
myheader.h e . Your own defined function function prototypes and various pre-

:void sayHello();:

....................................... statement

: processor statements. They are used to
#endif i

: allow source code files to access
i#include <stdio.h> _ _

i#include "myheader.h" Details of externally-defined functions.

\% your own defined function

E:‘-\-I-c-)-_:i:a...S..é..y.l.-ié.-l:.-l.-.é.i..)...:{. ‘E > main . C: source file’ Containing
; rintf("Hello, World!\n"); . . ere .
. : printf(\n*) s function definitions and the entire
main.c P} -

5
e N NN N NN NN NN NN NN NN NN NN N NSNS E RSN E R nnnn®
e

— rogram logic.
int-main() { program logic

iiiﬂi;lgf)i The main function » #include:request to use a header

11 ¢ file in our program

Credits: https://www.geeksforgeeks.org/header-files-in-c-cpp-and-its-uses/
https://utat-ss.readthedocs.io/en/master/c-programming/c_h _files.html

https://www.geeksforgeeks.org/header-files-in-c-cpp-and-its-uses/
https://utat-ss.readthedocs.io/en/master/c-programming/c_h_files.html

3
“ Tutorials ~ Exercises ~ Certificates Services v Search... Q (] % Plus ¢/> Spaces = For Teachers

schools

Css JAVASCRIPT SQL PYTHON JAVA PHP HOW TO W3.CsS (Cim c# BOOTSTRAP REACT MYSQL JQUERY EXCEL XML DJANGO
C Read Files
C Structures C stdio (stdio.h) Library
C Structures
¢ Enums = =3
C Enums
C Memory C stdio Functions Credits: https://www.w3schools.com/c/c_ref stdio.php

C Memory Management ‘
The <stdio.h> header provides a variety of functions for input, output and file handling.

C Reference A list of all stdio functions can be found in the table below:

C Reference

C Keywords Function Description

C <stdio.n>

C <stdlib.h> fclose() Closes a file

C <string.h> feof() Returns a true value when the position indicator has reached the end of the file

C <math.h>

C <ctype.h> ferror() Returns a true value if a recent file operation had an error

fgetc(). Returns the ASCII value of a character in a file and advances the position indicator

C Examples

C Examples fgets() Reads a line from a file and advances the position indicator

£ i B AT fopen() Opens a file and returns a file pointer for use in file handling functions

C Exercises

C Quiz fprintf() Writes a formatted string into a file

C Compiler fputc(). Writes a character into a file and advances the position indicator

C Syllabus

C Study Plan fputs() Writes a string into a file and advances the position indicator

C Certificate

fread() Reads data from a file and writes it into a block of memory

https://www.w3schools.com/c/c_ref_stdio.php

Programming in C/C++: A Hands-on Introduction

Part 3 — C Program Structure

Preprocessor Directives

» Program defined by:

Global Declarations

» global declarations

Function Definitions

> function definitions
int main () {

CLocaJ Declarations >
C Statements)

» May contain preprocessor directives

» Always has one function named main,

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| .
| and may contain others
|

Credits: Rich Maclin, CS 1621: Computer Science |, University of Minnesota-Duluth

Programming in C/C++: A Hands-on Introduction

Part 3 — C Program Structure

#include <stdio.h>

L]

int main() {
int y; // Local variable

lll
.
.

S printf("Enter x and y: ");

// Input x and y through your keyboard
scanf("%d %d", &x, &y);

// Print the sum value
printf("Sum is %d\n", x + y);

.

17 }l --

Programming in C/C++: A Hands-on Introduction

Part 3 — C Program Structure — PD

Preprocessor Directives:
» Begin with #

» Instruct the compiler to perform some transformation to the file

#include <stdio.h>

before compiling

int x; // Global variable

int main() {
int y; // Local variable

» Example: #include <stdio.h>

printf("Enter x and y: ");

// Input x and y through your keyboard

» add the header file stdio.h to this file om0

// Print the sum value
printf("Sum is %d\n", x + y);

> h for header f”e return @; // Added return statement for proper termination
L]

17 ¥

» stdio.h defines useful input/output functions

Programming in C/C++: A Hands-on Introduction

Part 3 — C Program Structure — Declarations

Declarations:

> Global

#include <stdio.h>

> visible throughout program :'i;l'm';i'n'('f'{"""""""':
int y; // Local variable

» describes data used throughout program printf("Enter x and y: ");

// Input x and y through your keyboard
scanf("sd %d", &x, &y);
» Local

// Print the sum value
printf("Sum is %d\n", x + y);

> visible within function

return @; // Added return statement for proper termination
17

» describes data used only in function

Programming in C/C++: A Hands-on Introduction

Part 3 — C Program Structure — Functions
Functions and Program Extraction:

#include <stdio.h>
#include "myheader.h"

» Consists of header and body

» header: int main () void sayHello() {

> body: contained between { and }) printf(*Hello, World:\n™);
» starts with location declarations R L L L ChELRLLERLD .
1 1nt4ma1n() { :
> followed by a series of statements i /sayHello(); i
P return 0;
» More than one function may be defined 11 i3

> Every program has one function main and main is executed

» Procedural programming: executed in order and are called (invoked)

Programming in C/C++: A Hands-on Introduction

Part 3 — C Program Structure — Comments
Comments:

» Single line:
» Multiple lines: Text between and
» Used to “document” the code for the human reader
» lgnored by the compiler (not part of the program)
» Have to be careful
» comments may cover multiple lines

> ends as soon as encountered

» so no internal comments: An internal comment

Programming in C/C++: A Hands-on Introduction

Part 3 — C Program Structure — Comments

#include <stdio.h>
5‘/* This comment covers
: multiple lines

in the program. Comment mU|t|p|e |IneS

* *
--

--

: // No local declarations : Comment one Iine

printf("Too many comments\n");
return 0; // Added return statement for proper program termination
13 } // end of main

Programming in C/C++: A Hands-on Introduction

Part 3 — C Program Structure — Comments
Comments:

» Global: start of program, outlines overall solution, may include structure chart
» Module: when using separate files, an indication of what each file solves

» Function: inputs, return values, and logic used in defining function

» Add documentation for key (tough to understand) comments

» Names of variables: should be chosen to be meaningful, make program readable

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Basics

#include <stdio.h> » Rules that define C language

int x; // Global variable » Specify which tokens are valid

int main() {

. . » Also indicate the expected order of tokens
int y; // Local variable

printf("Enter x and y: "); » Some types of tokens:
// Input x and y through your keyboard » reserved words: include printf
scanf("%sd %d", &x, &y);

» identifiers: x, v

// Print the sum value
printf(*sum is %d\n®, x + y); > literal constants: 5, ‘a’, 5.0

return @; // Added return statement for proper termination

7 ¥ » punctuation: { '} ; < > # /* */

Credits: https://www.geeksforgeeks.org/c-identifiers/

https://www.geeksforgeeks.org/c-identifiers/

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Naming Rules

#include <stdio.h>

int x; // Global variable > Names used for objects in C

int main() { . . pe .
int y: // Local variable » Rules for identifiers in C
printf("Enter x and y: "); » first char alphabetic [a-z, A-7]
// Input x and y through your keyboard or underscore (_)

scanf("%sd %d", &x, &y);

» has only alphabetic, digit, underscore chars
// Print the sum value
printf("sum is %d\n", x +y); > cannot duplicate a reserved word

return @; // Added return statement for proper termination >

17 Y case (upper/lower) matters

Credits: https://www.geeksforgeeks.org/c-identifiers/

https://www.geeksforgeeks.org/c-identifiers/

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Naming Rules

Valid

sum

c4 5
A_NUMBER
timeofflight
TRUE

_split_name

Invalid

70f9

X-name

name with spaces
1234a

int

AXYZ&

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Variables

» Variables declared in global or local declaration sections
» Syntax: Type Name;

» Examples:
int sum;
float avg;

char dummy;

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Variables

» Indicates how much memory to set aside for the variable
» Also determines how that space will be interpreted

» Basictypes: char, int, float, double, bool
» specify the amount of space (bytes) to set aside
» what can be stored in that space

» what operations can be performed on those vars

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Variables

» Can create multiple variables of the same type in one statement:
int x, y, Z;
is a shorthand for
int x;
int y;
int z;

- stylistically, the latter is often preferable

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Variables

» Giving a variable an initial value

» Variables not necessarily initialized when declared
» Can initialize in the declaration:

» Syntax: Type Name = Value;

» Example:
int x = 0;

int x, y, z = 0;

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C —void

» Type name: void

» Possible values: none
» Operations: none

» Useful as a placeholder

» Meaning: No value is present. It does not provide a result value to its

caller. It has no values and no operations. It is used to represent nothing.

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Integers

Type name: int, short 1int, long int

Type Bytes Bits Min Val Max Val

short int 2 16 -32768 32767
INnt 4 32 -2147483648 2147483647

long int 4 32 -2147483648 2147483647

Note: long long int andunsigned long long int: 8 bytes
Credits: https://www.geeksforgeeks.org/data-types-in-c/

https://www.geeksforgeeks.org/data-types-in-c/

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Unsigned Integers

» Type name: unsigned int
» No negative values

» unsigned int

» possible values: 0 to 65536

» Representation: binary number

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Floating Points

» float: 4 bytes, 32 bits
» double: 8 bytes, 64 bits
» long double: 10 bytes, 80 bits

» Representation:

» magnitude (some number of bits) plus exponent (remainder of bits)

> 3.26 X 10* for 32600.0

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Characters

» Type name: char

» Possible values: keys that can be typed on the keyboard

» Representation: each character is assigned a value (8-bit ASCII)
» A : binary number 65
» a : binary number 97
» b : binary number 98
» 2 : binary number 50

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Characters
» Single key stroke between quote char *’
» Examples: ‘2’, ‘a’, ‘b’, ‘17, ‘@’
» Some special chars:
»\0 : null char
>\t :tab char
»\n : newline char

>\ :single quote char

>\ \ : backslash char

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Constants

» Literal constants: tokens representing values from type

» Defined constants
» syntax: #define Name Value
» preprocessor command
» Name replaced by Value in the program

> example: #define MAX NUMBER 100

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Constants
» Memory constants
» declared similar to variables, type, and name
» const added before the declaration
» example: const float PI = 3.14159;
» can be used as a variable, but one that cannot be changed

» since the value cannot be changed, it must be initialized

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Format Specifiers

» Format string may contain one or more field specifications
» syntax: $Code or $ [Width] . [Precision]Code
» Code:
» c :data printed as character
» 1 or d: data printed as integer
» f :data printed as a floating-point value
» for each field specification, have one data value after the format string,

separated by commas

Credits: https://www.geeksforgeeks.org /format-specifiers-in-c/

https://www.geeksforgeeks.org/format-specifiers-in-c/

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Format Specifiers
printf (“%c %d $f\n”, '"A’, 35, 4.5);

produces
A 35 4.50000

Can have variables in place of literal constants
(value of variable printed)

Credits: https://www.geeksforgeeks.org /format-specifiers-in-c/

https://www.geeksforgeeks.org/format-specifiers-in-c/

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Format Specifiers

» When printing numbers, generally use Width/Precision to

determine format

» Width: how many character spaces to use in printing the field

(minimum, if more needed, more used)

» Precision: for floating point numbers, how many characters
appear after the decimal point, width counts decimal point,

number of digits after decimal, remainder before decimal

Credits: https://www.geeksforgeeks.org /format-specifiers-in-c/

https://www.geeksforgeeks.org/format-specifiers-in-c/

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Format Specifiers

printf (“$5d%8.3f\n”, 753, 4.1678);

produces

753 4.168

values are right justified (aligned)
If not enough characters in width, minimum number used

use 1 width to indicate minimum number of chars should be used

Credits: https://www.geeksforgeeks.org /format-specifiers-in-c/

https://www.geeksforgeeks.org/format-specifiers-in-c/

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Repetition Control

for (initialize expression; test expression; update expression)

{
//
// body of for loop
/1/ 1 #include <stdio.h> // Include the standard input-output library
} // Driver code
int main()

*

int i = @; // Declare an integer variable i, initialized to @

*

// For loop to print "Hello World" 1@ times
for (i = 1; i <= 10; i++) // Loop starts at 1 and continues while i is less than or equal to 10
{
printf("Hello World\n"); // Print "Hello World" followed by a newline
}

return @; // Return @, indicating that the program finished successfully

}

*
®sssmssssnnnnnnns?®

eSEEENEEEEEEEEEEEN,

Credits: https://www.w3schools.com/c/c_for loop.php

https://www.w3schools.com/c/c_for_loop.php

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Repetition Control

#include <stdio.h> // Include standard input-output library

// Driver code

// Update expression
i++; // Increment i by 1

int main()
while (test_expreSSLOn) »%7/ Initialization expression ‘s,
{ fint i = 1; // Variable i is initialized to 1 -
) // Test expression
// body of the while loop + while(i <= 10) // Loop will run as long as i is less than or equal to 10 :
= 1 .
update expression; : // Loop body :
- . printf("Hello World\n"); // Print "Hello World" followed by a newline @
} E :

“
*
-
.0

.
s s EEEsssssssssssssssssess’®

return @; // Return @, indicating successful completion of the program

¥
21

Credits: https://www.w3schools.com/c/c_while loop.php

https://www.w3schools.com/c/c_while_loop.php

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Conditions

if (conditionl) {
// block of code to be executed i1f conditionl 1s true
} else if (condition?2) {

// block of code to be executed i1f the conditionl is false and
condition? is true

} else {

// block of code to be executed i1f the conditionl is false and
condition? is false

Credits: https://www.w3schools.com/c/c_conditions_elseif.php

https://www.w3schools.com/c/c_conditions_elseif.php

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Conditions

1 #include <stdio.h>

int main() {

: // Conditional check based on the value of 'time'
if (time < 10) { // If time is less than 10 (morning)
printf("Good morning.");

} else if (time < 20) { // If time is between 10 (inclusive) and 20 (exclusive), i.e., day§
printf("Good day.");

} else { // If time is 20 or more (evening)
printf("Good evening.");

return 0;

}

Credits: https://www.w3schools.com/c/c_conditions_elseif.php

https://www.w3schools.com/c/c_conditions_elseif.php

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Conditions

switch (expression) {

case x:
// code block
break;

case y:
// code block
break;

default:
// code block

Credits: https://www.w3schools.com/c/c_switch.php

https://www.w3schools.com/c/c_switch.php

int main() {

+1ht day

The variéb&g 'day' is initialized to 4 (represents Thursday)
// Switch statement to handlesdifferent days of the week
switch (day) { :
case 1: // If 'day' is 1
printf("Monday");
break;
case 2: // If 'day' is 2
printf("Tuesday");
break;
case 3: // If 'day' is 3
printf("Wednesday");
break;
case 4: // If 'day' is 4
printf("Thursday");
break;
case 5: // If 'day' is 5
printf("Friday");
break;
case 6: // If 'day' is 6
printf("Saturday");
break;
case 7: // If 'day' is 7
printf({"Sunday");
break;
X default: // If 'day' doesg?t match any case (invalid input)
“en. RRENET(CInvalid dayl)e’

4

mmmm
.
I

77

U EEE NN NN NN NN NN NN NN NN NN EEEEENEEENNEEEENNEEENEEEEEEEENg,
L4
AN NN NS S EE NSNS EEEEEEEEEEEE NN EEEEEEEEEEEEEEEEEE

return 0;
}
Credits: https://www.w3schools.com/c/c_switch.php

https://www.w3schools.com/c/c_switch.php

Programming in C/C++: A Hands-on Introduction

Part 4 — Syntax of C — Structures

» A way to group several related variables into one place

» Each variable in the structure is known as a member of the structure

1 #include <stdio.h>
{ // Define a structure named myStructure
struct myStructure {
int myNum; // An integer variable
char myLetter; // A character variable

int main() {
/4. Reclare 2. variable [s1' of type 'struct myStructure'

: struct myStructure s1;:
return 9;

}

Credits: https://www.w3schools.com/c/c_structs.php

https://www.w3schools.com/c/c_structs.php

.

*

: // Define a structure named myStructure s
: struct myStructure {

int myNum; // Integer variable
char myLetter; // Character variable

int main() {
AL.R?ELQEEHQHYEE}EPLE.HS1' of type 'struct myStructure'

'// Assign values to structure members
sl myNum = 13;
.sl myLetter = 'B';

// Print structure members

printf("My number: %d\n", sl.myNum);
printf("My letter: %c\n", sl.mylLetter);

return 0;

}

Credits: https://www.w3schools.com/c/c_structs.php

https://www.w3schools.com/c/c_structs.php

Programming in C/C++: A Hands-on Introduction

Optional — Syntax of C — Pointers

Creating Pointers: &

» A variable that stores the memory address of another variable as its value

1 #include <stdio.h>

int main() {

LDE myAge, 5 436, {/.Declare, an integer, variable with value 43
«intx ptr = &myAge; // Declare a pointer 'ptr' and assign it the address of 'myAge':

// Output the value of myAge (should print: 43)
printf("%d\n", myAge);

// Output the memory address of myAge using the address-of operator (&)
printf("%p\n", &myAge);

?/ Output the memory address of myAge stored in the pointer 'ptr' F
printf("sp\n", ptr); :
return @;

}

Credits: https://www.w3schools.com/c/c_pointers.php

https://www.w3schools.com/c/c_pointers.php

Programming in C/C++: A Hands-on Introduction

Optional — Syntax of C — Pointers

Dereference Pointers: *

» You can also get the value of the variable the pointer points to, by using the * operator

1 #include <stdio.h>

int main() {
lnt myAge = 43; // Declare an 1nteger varlable and initialize it to 43

// Reference: Print the memory address of myAge using the pointer
printf("%sp\n", ptr);

'// Dereference: Print the value of myAge using the pointer : F
prlntf(”%d\n", *xptr);

return 0;

Credits: https://www.w3schools.com/c/c_pointers.php

https://www.w3schools.com/c/c_pointers.php

Programming in C/C++: A Hands-on Introduction

To learn more about C:

https://www.w3schools.com/c/index.php

Department of Electrical and Computer Engineering BOSTON
UNIVERSITY

Boston University

https://www.w3schools.com/c/index.php

Programming in C/C++: A Hands-on Introduction

Part 5 — C++: An Extension to the C Language

std::
is @ namespace that contains the
standard library components, such
as Data types, Functions, and
Objects.

#include <iostream>
#include <string>

int main() { o <:>
(@] .
std: 'string name;
std::cout << "What is your name?" << std::endl;
std::cin >> name;

std::cout << "Hello " << name << "I" << std::endl;
return 0;
10

Programming in C/C++: A Hands-on Introduction

Part 5 — C++: An Extension to the C Language

1 #include <iostream>
#include <string>

| using namespace std; : Widely used in practice!

int main() {
string name;
cout << "What is your name?" << endl;
cin >> name;
cout << "Hello " << name << "!" << endl;
return 0;

Programming in C/C++: A Hands-on Introduction

Part 5 — C++: An Extension to the C Language

An Example

Welcome to EC327
Introduction to Software Engineering!

Programming in C/C++: A Hands-on Introduction

12

Part 5 — C++: An Extension to the C Language

#ifndef NAME_INTERACTIONS_H
#define NAME_INTERACTIONS_H

#include <iostream>
#include <string>

VESS

* Prompts the user to input their name via Standard Input and returns the entered name.
* @param prompt The prompt message to display for the user.

* @return The name entered by the user.

*/

std::string readNameFromStandardIn(std::string prompt) ;|

#endif // NAME_INTERACTIONS_H

Programming in C/C++: A Hands-on Introduction

Part 5 — C++: An Extension to the C Language

#include <iostream>
#include <string>
#include "name_interactions.h"

std::string readNameFromStandardIn(const std::string prompt) {
std::string name;
std::cout << prompt << std::endl; // Use the prompt passed as an argument
std::getline(std::cin, name); // Read the full name, including spaces
return name; // Return the captured name

}

int main() {
std::string name = readNameFromStandardIn("What is your name?"); // Custom prompt

std::cout << "Welcome to EC327\n Introduction to Software Engineering,\n " << name << "!" << std::endl; // Print the greeting
return @;

17

Programming in C/C++: A Hands-on Introduction

To learn more about C++:
https://www.w3schools.com/cpp/default.asp

Department of Electrical and Computer Engineering BOSTON
UNIVERSITY

Boston University

https://www.w3schools.com/cpp/default.asp

Programming in C/C++: A Hands-on Introduction

If you wanna explore more about
C++, please check its Standards

(widely used in Companies)

https://www.geeksforgeeks.org/cpp-11-standard/

https://www.geeksforgeeks.org/cpp-11-standard/

Programming in C/C++: A Hands-on Introduction

Part 6 — Resources

» Coding standards

» Google style guide: https://google.github.io/styleguide/

> C

» learn C basics: https://www.w3schools.com/c/

» C++

» learn C++ basics: https://www.w3schools.com/cpp/default.asp

» learn C++ standards: https://www.geeksforgeeks.org/cpp-11-standard/

https://google.github.io/styleguide/
https://www.w3schools.com/c/
https://www.w3schools.com/cpp/default.asp
https://www.geeksforgeeks.org/cpp-11-standard/

Thank you very much for your attention!

Department of Electrical and Computer Engineering BOSTON
Boston University UNIVERSITY

	Slide 1: Programming in C/C++: A Hands-on Introduction
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Outline
	Slide 6: Part 1 – The Bigger Picture
	Slide 7: Part 1 – The Bigger Picture
	Slide 8: Part 2 – Types of C files
	Slide 9
	Slide 10: Part 3 – C Program Structure
	Slide 11: Part 3 – C Program Structure
	Slide 12: Part 3 – C Program Structure – PD
	Slide 13: Part 3 – C Program Structure – Declarations
	Slide 14: Part 3 – C Program Structure – Functions
	Slide 15: Part 3 – C Program Structure – Comments
	Slide 16: Part 3 – C Program Structure – Comments
	Slide 17: Part 3 – C Program Structure – Comments
	Slide 18: Part 4 – Syntax of C – Basics
	Slide 19: Part 4 – Syntax of C – Naming Rules
	Slide 20: Part 4 – Syntax of C – Naming Rules
	Slide 21: Part 4 – Syntax of C – Variables
	Slide 22: Part 4 – Syntax of C – Variables
	Slide 23: Part 4 – Syntax of C – Variables
	Slide 24: Part 4 – Syntax of C – Variables
	Slide 25: Part 4 – Syntax of C – void
	Slide 26: Part 4 – Syntax of C – Integers
	Slide 27: Part 4 – Syntax of C – Unsigned Integers
	Slide 28: Part 4 – Syntax of C – Floating Points
	Slide 29: Part 4 – Syntax of C – Characters
	Slide 30: Part 4 – Syntax of C – Characters
	Slide 31: Part 4 – Syntax of C – Constants
	Slide 32: Part 4 – Syntax of C – Constants
	Slide 33: Part 4 – Syntax of C – Format Specifiers
	Slide 34: Part 4 – Syntax of C – Format Specifiers
	Slide 35: Part 4 – Syntax of C – Format Specifiers
	Slide 36: Part 4 – Syntax of C – Format Specifiers
	Slide 37: Part 4 – Syntax of C – Repetition Control
	Slide 38: Part 4 – Syntax of C – Repetition Control
	Slide 39: Part 4 – Syntax of C – Conditions
	Slide 40: Part 4 – Syntax of C – Conditions
	Slide 41: Part 4 – Syntax of C – Conditions
	Slide 42
	Slide 43: Part 4 – Syntax of C – Structures
	Slide 44
	Slide 45: Optional – Syntax of C – Pointers
	Slide 46: Optional – Syntax of C – Pointers
	Slide 47
	Slide 48: Part 5 – C++: An Extension to the C Language
	Slide 49: Part 5 – C++: An Extension to the C Language
	Slide 50: Part 5 – C++: An Extension to the C Language
	Slide 51: Part 5 – C++: An Extension to the C Language
	Slide 52: Part 5 – C++: An Extension to the C Language
	Slide 53
	Slide 54
	Slide 55: Part 6 – Resources
	Slide 56

