

Image Quality Assessment and Perceptual Optimization:

A Non-local Modeling Approach

Shuyue Jia **M.Phil. Thesis Defense** Supervisor: Dr. Shiqi Wang

Outline

- 1. Background
- 2. Related Works
- 3. Local and Non-local Analyses of Natural Images
- 4. Proposed Non-local Modeling Method
- 5. Conclusions

Part 1: Background

Image Quality Assessment (IQA) and Distortions

Reference/Pristine Image

Distorted Image by Gaussian Noise

Motion Blur by Low Shutter Speed

Visual Quality Assessment: Synthetic and Authentic Distortions

Part 1: Background

IQA Category and Problem Definition

Image Credit: TID2013 Database; Quote Credit: British Physicist William Thomson

Part 1: Background Image Quality Assessment Roles

LPIPS

Part 2: Related Works – Full-reference IQA

1. Signal Fidelity Approaches

Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR)

 I_p : the number of pixels in the image; x_i and y_i are the i^{th} pixels of the ref. and dis. images.

MSE =
$$\frac{1}{I_p} \sum_{i=1}^{I_p} (x_i - y_i)^2$$
, PSNR = $10 \times \log_{10} \left(\frac{255^2}{\text{MSE}}\right)$.

2. Bottom-Up Approaches

Separately model each basic module of the Human Visual System (HVS)

A prototypical quality assessment system based on error sensitivity. Image by courtesy of Wang *et al.*

3. Top-Down Approaches

Directly imitate the function of HVS as a single model

Credit: Wang et al., Image Quality Assessment: From Error Visibility to Structural Similarity, In IEEE T-IP'04

Part 2: Related Works

General Framework – Reduced-reference IQA

A general framework of an RR image or image QA system. Image by courtesy of Wang *et al.*

Feature Extraction in the Spatial Domain and Transform Domain

Part 2: Related Works – No-reference (Blind) IQA

Distortion-Specific Modeling

Aware of image distortion types \rightarrow build distortion-specific models

General NR-IQA Modeling •

Natural Scene Statistics (NSS) Modeling

Feature Extraction in the **Spatial Domain** and **Transform Domain**

Human Visual System (HVS) Modeling

CNNs Modeling Methods

Assisted with visual importance information, reference image information during training, ranking-based methods, graph representation learning, etc.

Codebook-based Modeling

Constructing a **Codebook**

Taking **Convolutional Neural Networks (CNNs)** as an example

Input Image

Convolutional Neural Networks

Image Quality

- **Advantages**
 - Pooling **>** Translation invariance \checkmark
 - Convolution **\rightarrow** Translation equivalence \checkmark
 - Weight sharing -> Sharable and fewer parameters \checkmark
- Limitations
 - Small-sized receptive field

 Extracted features are too local \checkmark
 - Parameters fixed across the whole image \rightarrow Image content is equally treated \checkmark
 - Lack of geometric and relational modeling -> Missing complex relations and dependencies \checkmark

Part 3: Non-local Modeling Analyses of Natural Images

Local Feature Extraction

Non-local Dependency

Advantages

- ✓ Non-local statistics (natural scene statistics) → Perceptually relevant to HVS
- ✓ Non-local dependency and relational modeling → Semantics and content understanding
- ✓ Effective image-specific prior → Reflect the statistical property of the world
- Motivations
 - ✓ HVS → Adaptive to the local content
 - ✓ HVS perceives image quality → Long-range dependency constructed among different regions

Part 4: Proposed Non-local Modeling Method

NLNet Architecture

Local Modeling

1. Architecture

Input Patch

Pre-trained VGGNet-16

Pre-trained VGGNet features: "unreasonable" effectiveness in measuring perceptual quality [1]

2. Model Input

Randomly cropped image patches with the size of $112 \times 112 \times 3$

3. Feature Extraction

Quality-aware features: hierarchical feature means and standard deviations ^[2]

Experimental Results: 0.936 PLCC and 0.951 SRCC on the CSIQ Database

Credit: [1] Zhang *et al.*, <u>The Unreasonable Effectiveness of Deep Features as a Perceptual Metric</u>, In CVPR'18 [2] Ding *et al.*, <u>Image Quality Assessment: Unifying Structure and Texture Similarity</u>, In IEEE T-PAMI'20

Non-local Modeling Establishes Spatial Integration of Information by Long- and Short- Range Communications with different Spatial Weighting Functions	Local Modeling	Encodes Spatially Proximate Local Neighborhoods
	Non-local Modeling	Establishes Spatial Integration of Information by Long- and Short- Range Communications with different Spatial Weighting Functions

Superpixel Segmentation

(a)

(c)

(d)

The superpixel vs. square patch representation (**a/b**: Gaussian Blur, **c/d**: Gaussian Noise)

Superpixel vs. Square Patch

- Adherence to Boundaries \checkmark
- Visually Meaningful
- Accurate Feature Extraction

Superpixel Segmentation

(**a/b**: Gaussian Blur, **c/d**: Gaussian Noise)

Reference

Gaussian Noise

Superpixel Segmentation

(b)

Texture

Reference

Gaussian Blur

(c)

(a)

Gaussian Noise

The superpixel *vs.* square patch representation (**a/b**: Gaussian Blur, **c/d**: Gaussian Noise)

Non-local Modeling

Two-stage Graph Neural Network

Graph Nodes Construction \rightarrow **Non-local Feature Aggregation**

2. Model Input

1.

Superpixel-segmented cropped patches with the size of $112 \times 112 \times 3$ (superpixel size $\approx 8 \times 8$)

3. Feature Extraction

Local feature aggregation: complete graph

Non-local feature aggregation: **dense graph** measured by Cosine similarity

Experimental Results: 0.625 PLCC and 0.577 SRCC on the CSIQ Database

Image Credit: TID2013 Database

Non-local Behavior Visualization

The non-local behavior of the long-range dependency and relational modeling. (a) The <u>plane image</u> with a query on wings. (b) The <u>boat image</u> with a query on the nearby river bank. (c) <u>The Statue of Liberty image</u> with a query on the lady. (d) The <u>shrooms image</u> with a query on one shroom. (e) The <u>butterfly image</u> with a query on the wing. (f) <u>The Lafayette Square</u>, Washington, D.C. image with a query on flowers.

Image Credit: TID2013 and LIVE Databases

Training Objective Functions and Inference

- Training
 - 1. Quality Prediction Loss

Huber Loss

$$L_q = \frac{1}{B} \sum_k \text{HuberLoss}(\hat{q}_k - q_k).$$

2. Distortion Type Classification Loss

Cross-entropy Loss

$$L_t = -\frac{1}{B} \sum_{i=1}^{B} \sum_{d=1}^{D} p_{i,d} \ln \hat{p}_{i,d}.$$

3. Quality Ranking Loss

Huber Loss

$$L_r = \frac{1}{B(B-1)/2} \sum_{j < k} \text{HuberLoss}\left(\left(\hat{q}_j - \hat{q}_k\right) - \left(q_j - q_k\right)\right).$$

Inference

The average quality score of all the **non-overlapping patches**

	Notations
В	Batch Size
\hat{q}_k	The predicted quality score
q_k	Mean Opinion Score (MOS)
D	The number of distortion types
p _{i,d}	The label probability of the $d^{ ext{th}}$ distortion type
$\hat{p}_{i,d}$	The predicted probability of the $d^{ m th}$ distortion type

Definition of Global and Local Distortions

Non-Local Recurrence

Global Distortion

(**a/e**: reference image, **b/f**: Gaussian Blur, **c/g**: global contrast decrements, **d/h**: additive pink Gaussian noise)

Local Distortion (**a/d/g**: reference image, **b/e/h**: non eccentricity patch, **c/f/i**: color block)

Global	Globally and Uniformly Distributed distortions with
Distortion	Non-Local Recurrences over the image
Local Distortion	Local Nonuniform-Distributed distortions in a Local Region

Experimental Setup

Databases

LIVE, CSIQ, TID2013, and KADID-10k

Experimental Settings

Intra-Database Experiments:

→ 60% training

20% validation

20% testing

With "random" seeds from 1 to 10

Screen

Content

Image

→ Median PLCC and SRCC are reported.

Cross-Database Evaluations:

→ One database as the training set

The other databases as the testing set

- → Report the **last epoch**'s performance
- Evaluation Metrics

PLCC (Prediction Accuracy) SRCC (Prediction Monotonicity) Image Credit: LIVE, CSIQ, TID2013, and KADID-10k Databases

(b)

A brief summary of the LIVE, CSIQ, TID2013, and KADID-10k databases.

Database	LIVE [13]	CSIQ [14]	TID2013 [15]	KADID-10k [16]
Num. of Reference Images	29	30	25	81
Num. of Distorted Images	779	866	3,000	10,125
Num. of Distortion Types	5	6	24	25
Num. of Distortion Levels	$5\sim 8$	$3\sim 5$	5	5
Annotation	DMOS	DMOS	MOS	MOS
Range	[0, 100]	[0, 1]	[0, 9]	[1, 5]

Natural

Images

Intra-Database Experiments

Performance comparisons on the LIVE, CSIQ, and TID2013 databases. The top two results are highlighted in bold.

	Mathad	LIVE				TID2013	
	Metriod	SRCC	PLCC	SRCC	PLCC	SRCC	PLCC
	BRISQUE (2012) [10]	0.939	0.935	0.746	0.829	0.604	0.694
	CORNIA (2012) [104]	0.947	0.950	0.678	0.776	0.678	0.768
	M3 (2015) [105]	0.951	0.950	0.795	0.839	0.689	0.771
	HOSA (2016) [103]	0.946	0.947	0.741	0.823	0.735	0.815
	FRIQUEE (2017) [90]	0.940	0.944	0.835	0.874	0.68	0.753
	DIQaM-NR (2018) [35]	0.960	0.972	-	-	0.835	0.855
	DB-CNN (2020) [64]	0.968	0.971	0.946	0.959	0.816	0.865
	HyperIQA (2020) [65]	0.962	0.966	0.923	0.942	0.729	0.775
SOTA	GraphIQA (2022) [86]	0.968	0.970	0.920	0.938		
Transformer	TReS (2022) [87]	0.969	0.968	0.922	0.942	0.863	0.883
	NLNet	0.962	0.963	0.941	0.958	0.856	0.880

Fewer Training Data ↓ 20% Total Data ↑ Highly Competitive Performance

Performance comparisons on the KADID-10k database.

The top two results are highlighted in bold.

							<u></u>		
Method	BRISQUE [10]	CORNIA [104]	HOSA [103]	InceptionResNetV2 [16]	DB-CNN [64]	HyperIQA [65]	TReS [87]	NL	Net
SRCC	0.519	0.519	0.609	0.731	0.851	0.852	0.859	0.8	846
PLCC	0.554	0.554	0.653	0.734	0.856	0.845	0.858	0.8	850

Cross-Database Evaluations

Training	Ι	LIVE	C	SIQ	TID2013		
Testing	CSIQ	TID2013	LIVE	TID2013	LIVE	CSIO	
BRISQUE (2012) [10]	0.562	0.358	0.847	0.454	0.790	0.590	
CORNIA (2012) [104]	0.649	0.360	0.853	0.312	0.846	0.672	
M3 (2015) [105]	0.621	0.344	0.797	0.328	0.873	0.605	
HOSA (2016) [103]	0.594	0.361	0.773	0.329	0.846	0.612	
FRIQUEE (2017) [90]	0.722	0.461	0.879	0.463	0.755	0.635	
DIQaM-NR (2018) [35]	0.681	0.392	-	-	-	0.717	
DB-CNN (2020) [64]	0.758	0.524	0.877	0.540	0.891	0.807	
HyperIQA (2020) [65]	0.697	0.538	0.905	0.554	0.839	0.543	
NLNet	0.771	0.497	0.923	0.516	0.895	0.730	

Cross-database performance comparisons.

Similar Distortions TID2013: More Distortion Types & Levels

Single Distortion Type Evaluation on the LIVE Database

The **average SRCC and PLCC** results of the individual distortion type on the LIVE database. The top two results are highlighted in bold.

Demonstrations of the global distortions (**a/e**: reference image, **b/f**: white noise and **c/g**: JPEG) and local distortions (**d/h**: fast fading Rayleigh)

Single Distortion Type Evaluation on the CSIQ Database

The **average SRCC and PLCC** results of the individual distortion type on the CSIQ database. The top two results are highlighted in bold.

	SRCC	JPEG	JP2K	WN	GB	PN	CC		Mark .
	BRISQUE (2012) [10]	0.806	0.840	0.723	0.820	0.378	0.804		
	CORNIA (2012) [104]	0.513	0.831	0.664	0.836	0.493	0.462		
	M3 (2014) [105]	0.740	0.911	0.741	0.868	0.663	0.770	Clabel	
	HOSA (2016) [103]	0.733	0.818	0.604	0.841	0.500	0.716	Global	
	FRIQUEE (2017) [90]	0.869	0.846	0.748	0.870	0.753	0.838	Distantions	(a)
	dipIQ (2017) [82]	0.936	0.944	0.904	0.932	-	-	Distortions	
	MEON (2018) [71]	0.948	0.898	0.951	0.918	-	-		And the second second
	WaDIQaM (2018) [35]	0.853	0.947	0.974	0.979	0.882	0.923		HE CONTRACTOR
	DB-CNN (2020) [64]	0.940	0.953	0.948	0.947	0.940	0.875		
Noise-Related	HyperIQA (2020) [65]	0.934	0.050	0.921	0.915	0.021	0.874		
	NLNet	0.972	0.963	0.965	0.955	0.969	0.968		
Distortions	PLCC	JPEG	JI 215	WAN	CP	ÎN	CC		
	BRISQUE (2012) [10]	0.828	0.887	0.742	0.891	0.496	0.835		
	CORNIA (2012) [104]	0.563	0.883	0.687	0.904	0.632	0.543		(e)
	M3 (2014) [105]	0.768	0.928	0.728	0.917	0.717	0.787		· · /
	HOSA (2016) [103]	0.759	0.899	0.656	0.912	0.601	0.744		Demons
	FRIQUEE (2017) [90]	0.885	0.883	0.778	0.905	0.769	0.864		. Demons
	dipIQ (2017) [82]	0.975	0.959	0.927	0.958	-	-	(a	/e · reference
	MEON (2018) [71]	0.979	0.925	0.958	0.946	-	-	(6	
	DB-CNN (2020) [64]	0.982	0.071	0.930	0.907	0.050	0.895	con	trast decrem
	NLNet	0.991	0.976	0.967	0.9746	0.966	0.969	2011	

Demonstrations of the global distortions (**a/e**: reference image, **b/f**: Gaussian Blur, **c/g**: global contrast decrements, **d/h**: additive pink Gaussian noise)

Single Distortion Type Evaluation on the TID2013 Database

The **average SRCC** results of the individual distortion type on the TID2013 database. The top two results are highlighted in bold.

SRCC	Distortion Type	BRISQUE [10]	FRIQUEE [90]	HOSA [103]	MEON [71]	M3 [105]	DB-CNN [64]	CORNIA [104]	NLNe
	Additive Gaussian noise	0.711	0.730	0.833	3.4‰ 13	0.766	0.790	0.692	0.917
	Lossy compression of noisy images	0.609	0.641	0.838	0.772	0.692	0.860个7	.5%0.712	0.935
	Additive noise in color components	0.432	0.573	0.551	0.722	12.8%	0.700	0.137	0.850
	Comfort noise	0.196	0.318	0.622	0.406	0.353	0.7521	1.8%) .617	0.870
	Contrast change	-0.001	0.585	0.362	0.252	0.155	0.548	0.254	0.793
	Change of color saturation	0.003	0.589	0.045	0.684	-0.199	0.631	0.169	0.827
	Spatially correlated noise	0.746	0.866	0.842	0.926	3.2% 82	0.826	0.741	0.958
	High frequency noise	0.842	0.847	0.897	0.911111	.0% 00	0.879	0.815	0.921
	Impulse noise	0.765	0.730	0.809	0.901个1	.2% 38	0.708	0.616	0.913
Global	Quantization noise	0.662	0.764	0.815	0.8881	10%32	0.825	0.661	0.929
Distortion	Gaussian blur	0.871	0.881	0.883	0.887	0.896	0.859	0.850	0.912
	Image denoising	0.612	0.839	0.854	0.797	0.709	0.865	. % 0.764	0.882
	JPEG compression	0.764	0.813	0.891	0.850	0.844	0.894个1	.1% 0.797	0.905
	JPEG 2000 compression	0.745	0.831	0.919个1	.1%891	0.885	0.916	0.846	0.930
	Multiplicative Gaussian noise	0.717	0.704	0.768	0.849	5.5% 38	0.711	0.593	0.904
	Image color quantization with dither	0.831	0.768	0.896	0.857	0.908	0.833	0.683	0.911
	Sparse sampling and reconstruction	0.807	0.891	0.909	0.855	0.893	0.902	0.865	0.940
	Chromatic aberrations	0.615	0.737	0.753	0.779	0.570	0.732	0.696	0.773
	Masked noise	0.252	0.345	0.468	0.728	0.577	0.646	0.451	0.700
	Mean shift (intensity shift)	0.219	0.254	0.211	0.177	0.119	-0.009	0.232	0.358
	JPEG transmission errors	0.301	0.498	0.730	0.746	0.375	0.772 13	.3%0.694	0.805
Local	JPEG 2000 transmission errors	0.748	0.660	0.710	0.716	0.718	0.7731	0.2%686	0.875
Distortion	Non eccentricity pattern noise	0.269	0.076	0.242	0.116	0.173	0.270	4.6%200	0.616
	Local bock-wise distortions with different intensity	0.207	0.032	0.268	0.500	0.379	0.444	0.027	0.493

(a) (f) (g) (b) (h) (C) m (i) (e) (i) (o)

Noise and Compression-related Distortions

Demonstrations of the local distortions (**a/f/h**: reference image, **b/g/l**: JPEG transmission errors, **c/h/m**: JPEG2000 transmission errors, **d/i/n**: non eccentricity pattern noise, **e/j/o**: local block-wise distortions of different intensity)

Single Distortion Type Evaluation on the KADID-10k Database

The average SRCC results of the individual distortion type on the KADID-10k database. The local distortions are highlighted in blue, and the top two results are highlighted in bold.

Dis	stortion Type	BLIINDS-II [91]	BRISQUE [10]	ILNIQE [102]	CORNIA [104]	HOSA [103]	WaDIQaM [35]	NLNet
	Lens blur	0.781	0.674	0.846	0.811	0.715	0.730	0.914
Blurs	Gaussian blur	0.880	0.812	0.883	0.866	0.852	0.879	0.914
	Motion blur	0.482	0.423	0.779	0.532	0.652	0.730	0.899
	Color diffusion	0.572	0.544	0.678	0.243	0.727	0.833	0.916
	Color saturation 2	0.602	0.375	0.677	0.120	0.841	0.836	0.909
Color distortions	Color quantization	0.670	0.667	0.676	0.323	0.662	0.806	0.853
	Color shift	-0.139	-0.182	0.090	-0.002	0.050	0.421	0.777
	Color saturation 1	0.091	0.071	0.027	-0.019	0.216	0.148	0.604
	JPEG compression	0.414	0.782	0.804个6	.2% 0.556	0.582	0.530	0.866
Compression	JPEG 2000 compression	0.655	0.516	0.790 <mark>个6</mark>	.3%0.342	0.608	0.539	0.853
	Denoise	0.457	0.221	0.856个9	.7% 0.229	0.247	0.765	0.953
	White noise in color component	0.757	0.718	0.841	0.418	0.745	.1% 0.925	0.936
Noise	Multiplicative noise	0.702	0.674	0.682	0.306	0.776	.0% 0.884	0.934
	Impulse noise	0.547	-0.543	0.808	0.219	0.254	0.2% 0.814	0.916
	White Gaussian noise	0.628	0.708	0.776	0.357	0.680 个1	.7% 0.897	0.914
`	Brighten	0.458	0.575	0.301	0.227	0.753	0.685	0.822
Brightness change	Darken	0.439	0.405	0.436	0.206	0.744	0.272	0.647
	Mean Shift	0.112	0.144	0.315	0.122	0.591	0.348	0.335
	Jitter	0.629	0.672	0.441	0.719	0.391	0.778	0.899
Spatial distortions	Pixelate	0.196	0.648	0.577	0.587	0.702	0.700	0.814
	Quantization	0.781	0.714	0.571	0.259	0.681	0.735	0.791
	Color block	-0.020	0.067	0.003	0.094	0.388	0.160	0.440
	Non-eccentricity patch	0.083	0.191	0.218	0.121	0.461	0.348	0.433
Sharpness and contrast	High sharpen	-0.015	0.361	0.681	0.114	0.230	0.558	0.932
sharphess and contrast	Contrast change	0.062	0.105	0.072	0.125	0.452	0.421	0.513

Demonstrations of the local distortions (a/d/g: reference image, b/e/h: noneccentricity patch, **c/f/i**: color block)

Part 5: Conclusions and Future Directions

Credit:

- [1] Zontak et al., Internal Statistics of a Single Natural Image, In CVPR 2011
- [2] Buades et al., A Non-local Algorithm for Image Denoising, In CVPR 2005
- [3] Zhou et al., Blind Quality Assessment of Dense 3D Point Clouds with Structure Guided Resampling, Under Review In IEEE TCSVT'23
- [4] Zhang et al., A Perceptual Quality Assessment Exploration for AIGC Images, In arXiv

專業 創新 胸懷全球 Professional·Creative For The World

Thank you very much for your Attention!

