Spatial Sparse CNNs from Masks

Shuyue Jia

Challenges & Problems:

• Region of Interest

- Attention Mechanism
- Image regions are not equally important
- Spatial sparsity
 - Traditional (Dense) Convolutions \rightarrow high computational cost
 - Binary masks \rightarrow Sparse Region of Interest
- Practical Speed-up
 - Many literature: theoretical complexity
 - Slow inference speed

Related Work (Conditional Execution / NN Gating):

- Layer-based methods: Certain network layers or blocks
 - Adaptive Computation Time ← Stop learning (halting score)
- Channel-based methods: Prune channels dynamically
 - Advanced features are only needed for a subset of the images
- Spatial methods:
 - Glimpse/Cascades → Region of Interest **but** Lose features
 - Spatially Adaptive Computation Time (SACT) ← features refinement
 - SBNet (Two stage): Mask \rightarrow Tiles
 - Masks \rightarrow Attention Mechanism (Weights are binary)

Methods (training):

Traditional Method: direct CNNs (ResNet) ← Feature Extraction

$$X_{b+1} = r(\mathcal{F}(X_b) + X_b)$$

Goal: study the spatial execution masks for an image

Methods (Inference): Gather-scatter Strategy

Loss Function: sparsity loss criterion

MobileNetV2 :
$$\mathbb{F}_b = H \cdot W \cdot \left(9C_{b,e} + 2C_bC_{b,e}\right)$$

This

This Work:
$$\mathbb{F}_{b,sp} = N_{b,dilated}C_bC_{b,e} + N_b(9C_{b,e} + C_{b,e}C_b) \qquad N_b = \sum G_b$$
Floating point
Operations Loss
 $\theta \in [0,1]$

$$\mathcal{L}_{sp,low} = \frac{1}{B}\sum_{b}^{B} \max(0, p \cdot \theta - \frac{\mathbb{F}_{b,sp}}{\mathbb{F}_b})^2$$
 $\mathcal{L}_{sp,up} = \frac{1}{B}\sum_{b}^{B} \max(0, \frac{\mathbb{F}_{b,sp}}{\mathbb{F}_b} - (1 - p(1 - \theta)))^2 \qquad p \in [0,1]$

$$\mathcal{L} = \mathcal{L}_{task} + lpha(\mathcal{L}_{sp,net} + \mathcal{L}_{sp,lower} + \mathcal{L}_{sp,upper})$$

Limitations and Improvements

- Limitations:
 - Applications:
 - Smaller Objects ← Gather Operation (Flatten)
 - Multiple Objects
 - Background Clutter
 - etc.
 - Algorithms:
 - Features cannot be fully extracted ← Region of Proposal (Musk)
- Potential Improvements:
 - Transformers ← Attention Mechanism (Reference: "End-to-End Object Detection with Transformers")
 - Fine-grained features extracted methods
 - If 3D Convolution: Factored Convolution $O(N^3) \rightarrow O(N^2+N)$ Speed up

3D Human Pose Estimation by

Mixing 2D Image and 3D Depth Triplets Heatmaps

Challenges & Problems:

• Lack of Information (Features)

- Single Image ← inherent ambiguities
- Attention Mechanism

• Hard to trade-off between Efficiency and Effectiveness

- Representation efficiency
- Learning effectiveness
- Lack of Training Data
 - Manual annotation \rightarrow "In the wild" Images
 - 3D Annotations

Related Work (3D pose estimation based on CNNs):

• Direct Encoder-Decoder

- Single stage
- End-to-end
- Transition with 2D Joints
 - Two stages
 - 2D image \rightarrow 2D joint locations \rightarrow 3D space (3D joint locations)
- 3D-Aware Intermediate States
 - Two stages
 - 2D image \rightarrow **3D-aware states** \rightarrow 3D joint locations
 - Volumetric Representation
 - * Helpful: Relative depth information (This work: Part-Centric Heatmap Triplets) → Promote Performance

Related Work (3D human body reconstruction based on CNNs):

- * Parametric human body space, e.g., SMPL
- Two-stage Framework
 - 2D image \rightarrow 2D joint locations \rightarrow SMPL
 - Depth ambiguity \rightarrow Local minimum
- One-stage Framework
 - 2D image \rightarrow SMPL
 - Lack of 3D model annotations
- Intermediate States
 - Two stages
 - 2D image → 2D Intermediate states → SMPL
- Voxel, Mesh, UV-maps

Methods:

Methods: Intermediate representation of the 3D-aware relationship

- 2D Image (coordinates)
- **Relative depth information** ← **Part-Centric Heatmap Triplets**

$$P(x_p, y_p, x_c, y_c, r(z_p, z_c))$$

1. Pairwise joints' co-location likelihoods

2. Depth relations \rightarrow learn geometric constraints

Relative Depth Ordering

$$r(z_p, z_c) = \begin{cases} 1 & z_p - z_c > \epsilon \\ 0 & \left| z_p - z_c \right| < \epsilon \\ -1 & z_p - z_c < -\epsilon \end{cases}$$

 $\boldsymbol{\epsilon}$: Relative depth difference

Part-centric heatmap triplets $\{\mathbf{T}_{k}^{-1}, \mathbf{T}_{k}^{0}, \mathbf{T}_{k}^{+1}\}$ $\mathbf{T}_{k} = \operatorname{Stack}[\mathbf{T}_{k}^{-1}, \mathbf{T}_{k}^{0}, \mathbf{T}_{k}^{+1}]$

Loss Function:

HEMlets loss:
$$\mathcal{L}^{\text{HEM}} = \|(\mathbf{T}^{\text{gt}} - \mathbf{\hat{T}}) \odot \mathbf{\Lambda}\|_{2}^{2}$$

Auxiliary 2D joint loss: $\mathcal{L}^{2D} = \sum_{n=1}^{N} \|\mathbf{H}_{n}^{\text{gt}} - \mathbf{\hat{H}}_{n}\|_{2}^{2}$
Soft-argmax 3D joint loss: $[\hat{x}_{n}, \hat{y}_{n}, \hat{z}_{n}] = \int_{\mathbf{v}} \mathbf{v} \cdot \text{Softmax}(\mathbf{F}_{n})$
3D joints Regression loss: $\mathcal{L}_{\lambda}^{3D} = \sum_{n=1}^{N} (|x_{n}^{\text{gt}} - \hat{x}_{n}| + |y_{n}^{\text{gt}} - \hat{y}_{n}| + \lambda |z_{n}^{\text{gt}} - \hat{z}_{n}|)$
Training Loss: $\mathcal{L}^{\text{int}} = \mathcal{L}^{\text{HEM}} + \mathcal{L}^{2D}$
 $\mathcal{L}^{\text{tot}} = \alpha * \mathcal{L}^{\text{int}} + \mathcal{L}_{\lambda}^{3D}$

Limitations and Improvements

- Limitations:
 - Algorithms:
 - Heatmaps? ← Region of Interest
 - Not efficient \leftarrow 2D joint annotations and 3D joint annotations
 - Hard to transfer to other objects \leftarrow Too many annotations

• Potential Improvements:

- Combine the last paper: Spatial Sparse CNNs from Masks \rightarrow Heatmaps
- Depth Information should be considered