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Challenges & Problems:

* Region of Interest
e Attention Mechanism

* Image regions are not equally important

* Spatial sparsity
* Traditional (Dense) Convolutions — high computational cost

* Binary masks — Sparse Region of Interest

* Practical Speed-up
* Many literature: theoretical complexity

* Slow inference speed



Related Work (Conditional Execution / NN Gating):

* Layer-based methods: Certain network layers or blocks

* Adaptive Computation Time «— Stop learning (halting score)

e Channel-based methods: Prune channels dynamically

* Advanced features are only needed for a subset of the images

* Spatial methods:
* Glimpse/Cascades — Region of Interest but Lose features
» Spatially Adaptive Computation Time (SACT) « features refinement

* SBNet (Two stage): Mask — Tiles

* Masks — Attention Mechanism (Weights are binary)



Methods (training):
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Straight-through Gumbel-softmax trick

Gumbel-max Sampling: category distribution
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Problem: ¥

) i 1. Not a good probability distribution
: 2. Not continuous, differentiable

Solution: Gumbel-Softmax Sampling

exp((log(m;) + ¢:)/T)
S5, exp((log(m;) + g;)/7)

Yi =

Noise samples

Gumbel distribution

Simply the equation:

m+91—92) > 0.5

N
:

Gy = G(M(Xp)) € {0, 1}wet Xhb41

Goal: study the spatial execution masks for an image



Methods (Inference): Gather-scatter Strategy
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Loss Function: sparsity loss criterion
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Limitations and Improvements

* Limitations:
* Applications:
* Smaller Objects «— Gather Operation (Flatten)
*  Multiple Objects
* Background Clutter
* eftc.

* Algorithms:

* Features cannot be fully extracted «— Region of Proposal (Musk)

* Potential Improvements:

* Transformers «— Attention Mechanism (Reference: “End-to-End Object Detection with Transformers™)

* Fine-grained features extracted methods

 If 3D Convolution: Factored Convolution O(N?) — O(N?+N) Speed up



3D Human Pose Estimation by

Mixing 2D Image and 3D Depth Triplets Heatmaps



Challenges & Problems:

e Lack of Information (Features)
* Single Image < inherent ambiguities

e Attention Mechanism

* Hard to trade-off between Efficiency and Effectiveness
* Representation efficiency

* Learning effectiveness

* Lack of Training Data
e Manual annotation — “In the wild” Images

3D Annotations



Related Work (3D pose estimation based on CNNs):

* Direct Encoder-Decoder
* Single stage
* End-to-end

* Transition with 2D Joints
* Two stages

e 2D image — 2D joint locations — 3D space (3D joint locations)

* 3D-Aware Intermediate States
* Two stages
* 2D image — 3D-aware states — 3D joint locations
* Volumetric Representation

* Helpful: Relative depth information (This work: Part-Centric Heatmap Triplets) — Promote Performance



Related Work (3D human body reconstruction based on CNNs):

* Parametric human body space, e.g., SMPL

* Two-stage Framework
e 2D image — 2D joint locations — SMPL

* Depth ambiguity — Local minimum

One-stage Framework
* 2D image — SMPL

 Lack of 3D model annotations

Intermediate States
* Two stages

* 2D image — 2D Intermediate states — SMPL

Voxel, Mesh, UV-maps



Methods:
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Methods: Intermediate representation of the 3D-aware relationship
* 2D Image (coordinates)

* Relative depth information < Part-Centric Heatmap Triplets

- Skeletal parts

@ Joints used to define /
skeletal parts 4
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p: parent joint 1. Pairwise joints’ co-location likelihoods

2. Depth relations — learn geometric constraints

c: child joint
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Loss Function:
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Limitations and Improvements

e Limitations:

* Algorithms:
* Heatmaps? < Region of Interest
* Not efficient «— 2D joint annotations and 3D joint annotations

* Hard to transfer to other objects «<— Too many annotations

* Potential Improvements:
e Combine the last paper: Spatial Sparse CNNs from Masks — Heatmaps

* Depth Information should be considered



