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1 Background

Scene understanding with depth-aware panoptic segmentation recently triggered my atten-
tion [1]. Video Panoptic Segmentation (VPS) is challenging and crucial for many tasks, such
as autonomous driving, robotics, mixed reality, sensor vision, and video editing. The VPS com-
bines semantic and instance segmentation such that all pixels are assigned a class label, and
all object instances are uniquely segmented across video frames [2]. It needs an extension to
include monocular depth prediction for a complete scene understanding, i.e., Depth-aware VPS
(DVPS). Monocular depth estimation aims to predict the spatial position of each 3D point
projected to the image plane.

2 Proposed Geometry Constrained Fusion for DVPS

This proposal presents a geometry-constrained fusion approach that aims to improve temporal
association for DVPS. It introduces geometry constraints into the joint-learning framework of
video segmentation, depth prediction, and optical flow estimation. In specific, this method
aims to enhance segmentation results with temporally consistent instance tracking,
consistent depth prediction via multi-task learning, and simple yet effective deep
network components.

2.1 Temporally Consistent Instance Tracking

2.1.1 Research Question and Gap

One of the key research questions is how to achieve the temporally consistent in-
stance association between multiple frames for VPS more effectively. Traditional
works aim to build effective and efficient Multi-Object Tracking (MOT) methods to address
the instance association problem, such as instance embedding similarity [3,4]. Most methods are
deliberately designed from the perspective of high-level correspondence, where the instance-level
information between frames is associated [5]. Apart from high-level correspondence, a grow-
ing body of research has revealed that motion clues from the low-level pixel perspective are
beneficial to the segmentation task [6, 7]. However, the unilateral flow information helps learn
a good representation for moving objects, but not for static objects. In addition, flow is not
good at distinguishing individual objects, especially when their motions are similar [8, 9] 1. So
far, the consistency between high-level object association and low-level pixel corre-
spondence has not yet been explored in the literature. In consequence, to fill the gap, a
temporally consistent instance tracking module is proposed by tracking objects via
optical flow, in consistency with the instance embedding association. The method is
designed to achieve a unified representation and processing for the temporal association, which
is aimed at promoting the segmentation performance of the VPS task.

2.1.2 Proposed Solution

Firstly, based on the flow information and the tracking results from the track head, the pixel
low-level correspondence and instance high-level association have been established. The low-

1 Some flow preliminary results are on my GitHub through the GMFlowNet model [10].
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level correspondence, i.e., optical flow map, is derived from the trained flow network, e.g., GM-
FlowNet [10]. Secondly, patch-level and pairwise embedding methods are presented to obtain
instance flow embedding and instance track embedding [5]. Thirdly, a shared fusion module
is introduced to generate the estimated instance embeddings of the next frame by integrating
the flow and track information with instance information, respectively. Finally, instance em-
beddings from the flow and track branches are constrained via a consistency loss. This instance
similarity constraint between low-level pixels and high-level instances may alleviate the instance
switch problem when processing a video clip.

2.2 Consistent Depth Prediction

2.2.1 Research Question and Gap

Since segmentation, depth, and flow are tightly coupled with the inherent geometry constraints,
they should be considered together to benefit from each other and achieve much higher accu-
racy. Another key research question for DVPS is the influence of depth on segmen-
tation and vice versa. The general idea of this proposal for DVPS is to utilize the
previous general representation, such as depth or flow, to help provide hints for
later frame’s predictions, and explore more possibilities of using this multi-modal
information 2.

2.2.2 Proposed Solution

Since segmentation, depth, and flow tasks are deeply correlated, separate processing is non-
optimal. Thus, consistent depth prediction is achieved by joint learning of multi-tasks
employing a depth loss [1, 4]. The features of the segmentation network are shared with the
depth network through the backbone. In addition, current depth-segment interaction is
limited. For example, the recent DVPS state-of-the-art (SOTA) method, i.e., Polyphonic-
Former, only applies independent processing and a query linking [4]. Thus, the interaction
between segmentation and depth prediction deserves further study. The depth po-
sitional encoding injects depth positional hints into the backbone, which may be one of the
potential solutions [12].

2.3 Optical Flow Estimation

As for the optical flow estimation module, it could be fine-tuned together with the segmen-
tation and depth prediction tasks, depending on performance and efficiency 3. Through
multi-task learning, segmentation, depth prediction, and flow estimation can be solved together.
Prior to end-to-end training, the optical flow maps can be generated offline by a trained flow
network.

2.4 Backbone Architecture

My previous research on electroencephalogram (EEG) signal processing and neuroscience focused
on extracting spatio-temporal features from time-series signals [13–15]. To build a robust and
efficient DVPS backbone, an object-centric learning framework with multi-scale spatio-
temporal feature extraction can be employed. In detail, the network extracts spatial features
from video frames and then utilizes temporal attention to refine the extracted spatial features. It
was also inspired by my non-local dependency modeling research [16]. Last but not least, another

2 The unified 3D representation for DVPS (first predicts depth from the constructed 3D scenes, then conducts
segmentation) is also worth exploring [11].

3 The Ground Truth of flow maps can be produced by a pre-trained flow model.
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consideration is that some highly performant Video Instance Segmentation (VIS) methods
are mainly based on the multi-scale spatio-temporal feature extraction scheme [17, 18]. The
backbone design for DVPS may refer to the SOTA VIS methods.

2.5 Multi-source Data Employment

A robust and effective DVPS system does not merely rely on effective network and module design
but also on technical details, such as data pre-processing. For instance, in the SemKITTI-DVPS
dataset, different data may have much sparser Ground Truth (GT) or different semantic labels
for the content 4. Thus, a proper training strategy should be investigated to balance
the data of such partial labels, and the semantics of the wrong labels should be
corrected and unified. As a consequence, during the data pre-processing stage, I conducted
experiments to generate dense masks from sparse masks through linear interpolation 5.

Another issue is lacking labeled data. GT data for dense prediction tasks, such as depth predic-
tion, image & video segmentation, or optical flow estimation, costs much more resources than
sparse prediction tasks. Thus, a data-efficient training scheme may be employed. For example,
labeled pseudo-video data can be synthesized by deforming and shifting the instances from la-
beled images. Self-supervised learning may also be applied to explore the data distribution and
inherent geometry constraints.
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