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Part 1 − Prompt Category

§ (Few-shot) In-Context Learning Imitation

§ No gradient update or fine-tuning

§ Literally just take a pre-trained model and give it the following prefix

Prompt-based Learning and Robustness Evaluation

Image Credits: in the public domain. Paper Credits: Brown et al., Language Models are Few-Shot Learners, In NeurIPS’20.

𝑇 = { P!:# , 𝐱, P#$%:& , 𝐲}
Template
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𝐲

P!:#
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Part 1 − Prompt Category

§ Discrete Prompt (Hard Prompt): Words, learn lexical sequences

§ Continuous Prompt (Soft Prompt): Vectors, learn embeddings (Soften Version)

Prompt-based Learning and Robustness Evaluation

A Framework of Autoregressive LM

Credits: Paaß et al., Foundation Models for Natural Language Processing: Pre-trained Language Models Integrating Media, In Springer Nature’23.
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§ Continuous Prompt (Soft Prompt): Vectors initialized from word embeddings

§ Prompt Tuning: Additional learnable parameters injected into the model
§ Pros: Learn generalizable task-specific embeddings and parameter-efficient
§ Cons: Hard to interpret and cannot be applied to publicly unavailable models [1]

Prompt-based Learning and Robustness Evaluation

A Framework of Autoregressive LM

Continuous Prompt

Part 1 − Prompt Category – Continuous Prompt

Credits: [1] Ishibashi et al., Evaluating the Robustness of Discrete Prompts, In arXiv’23.
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Prompt-based Learning and Robustness Evaluation

Part 2 − Continuous Prompt-based Learning
Prompt Tuning: Additional learnable parameters injected into the model

Original Prefix Tuning
Credits: AACL 2022 Tutorial: Recent Advances in Pre-trained Language Models: Why Do They Work and How to Use Them

https://d223302.github.io/AACL2022-Pretrain-Language-Model-Tutorial/
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Prompt-based Learning and Robustness Evaluation

Part 2 − Continuous Prompt-based Learning
Prompt Tuning: Additional learnable parameters injected into the model

Prefix-Tuning

Credits: Li et al., Prefix-Tuning: Optimizing Continuous Prompts for Generation, Too, In ACL’21.

continuous task-specific vector

z = [𝐏𝐫𝐞𝐟𝐢𝐱; 𝐱, 𝐲]
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Prompt-based Learning and Robustness Evaluation

Part 2 − Continuous Prompt-based Learning
Prompt Tuning: Additional learnable parameters injected into the model

Pseudo-tuning (P-tuning)

Credits: Liu et al., GPT Understands, Too, In AI Open’23.

𝑇 = { 𝐏!:# , 𝐱, 𝐏#$%:& , 𝐲}
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Prompt-based Learning and Robustness Evaluation

Part 2 − Continuous Prompt-based Learning
Prompt Tuning: Additional learnable parameters injected into the model

Soft Prompts

Credits: Qin et al., Learning How to Ask: Querying LMs with Mixtures of Soft Prompts, In NAACL’21.

___', 𝐯𝟏, 𝐯𝟐, 𝐯𝟑, …, 𝐯𝒏, ___,, 𝐯𝒏$𝟏

𝐯𝒊
(𝒍) ← 𝐯𝒊

(𝒍) + ∆
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Prompt-based Learning and Robustness Evaluation

Part 2 − Continuous Prompt-based Learning
Prompt Tuning: Additional learnable parameters injected into the model

Prompt Tuning

Credits: Lester et al., The Power of Scale for Parameter-Efficient Prompt Tuning, In EMNLP’21.

[𝐏𝐞; 𝐗𝐞] ∈ ℝ(2$3)×5

Task-specific 
prompt vectors Task Batch
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§ Discrete Prompt (Hard Prompt): Words that are originally in the vocabulary

§ Discrete Prompt Learning: Learn lexical sequences
§ Pros: Easy to interpret
§ Cons: Require domain expertise/understanding, and sub-optimal and sensitive [1, 2]

Prompt-based Learning and Robustness Evaluation

Part 1 − Prompt Category – Discrete Prompt

Credits: [1] Liu et al., GPT Understands, Too, In AI Open’23. [2] Zhao et al., Calibrate Before Use: Improving Few-Shot Performance of Language Models, In ICML’21.

A Framework of Autoregressive LM
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Prompt-based Learning and Robustness Evaluation

Part 3 − Discrete Prompt-based Learning
Discrete Prompt-based Learning: Automatically learn prompts from training data

Credits: Ishibashi et al., Evaluating the Robustness of Discrete Prompts, In EACL’23.
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Prompt-based Learning and Robustness Evaluation

Part 3 − Discrete Prompt-based Learning
Discrete Prompt-based Learning: Automatically learn prompts from training data

AutoPrompt (AP)

Credits: Shin et al., AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts, In EMNLP’20.

Trigger Tokens
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Prompt-based Learning and Robustness Evaluation

AutoPrompt (AP) – Template

Credits: Shin et al., AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts, In EMNLP’20.

Trigger Tokens

CLS sentence T T T T T P [SEP]
𝑥678 𝑥9:6;

Trigger Tokens

MASKFor
Classification 

Task

Separate
Multiple

Sentences

(sub, rel, obj)
𝐒𝐮𝐛𝐣𝐞𝐜𝐭

𝐑𝐞𝐥𝐚𝐭𝐢𝐨𝐧

Object

Selected	from	a set of	label	tokens	𝒱!

= #
!∈𝒱!

𝑝( MASK = 𝑤|𝒙$%&'$() .
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Prompt-based Learning and Robustness Evaluation

AutoPrompt (AP) – Gradient-based Prompt Search

Credits: Shin et al., AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts, In EMNLP’20.

CLS sentence T T T T T P [SEP]
𝑥678 𝑥9:6;

Trigger Tokens

MASKFor
Classification 

Task

Separate
Multiple

Sentences

𝑝 𝑦 𝒙/012/3 = E
4∈𝒱

𝑝 MASK = 𝑤 𝒙/012/3 .
𝑥!"#$
(&) ← 𝑤 ∈ 𝒱

First-order approximation to get a candidate set 𝒱!"#$:

𝒱!"#$ = %∈𝒱
()*+,[𝐰𝐢𝐧𝑻 ∇log 𝑝(𝑦|𝑥*0)1*()]. 𝐖2#: input	embedding	of	𝑤
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Prompt-based Learning and Robustness Evaluation

AutoPrompt (AP) – Automating Label Token Selection

Credits: Shin et al., AutoPrompt: Eliciting Knowledge from Language Models with Automatically Generated Prompts, In EMNLP’20.

CLS sentence T T T T T P [SEP]
𝑥678 𝑥9:6;

Trigger Tokens

MASKFor
Classification 

Task

Separate
Multiple

Sentences
Label

Tokens

𝐡 = Transformer()* L𝐱 ,

𝑝 𝑦 𝐡 + ∝ exp 𝐡 + T 𝐲 + 𝛃𝐲 .
Classifier

𝒱- = .∈𝒱
!1234 𝑠 𝑦, 𝑤 ,

where score 𝑠 𝑦, 𝑤 = 𝑝(𝑦|𝐰15!) ∝ exp(𝐰15! T 𝐲 + 𝛃𝐲)

Words: 𝐰15! T 𝐲
Labels:𝐡 + T 𝐲
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Prompt-based Learning and Robustness Evaluation

Part 3 − Discrete Prompt-based Learning

Manually-written Prompts (MP)

Credits: Schick et al., Exploiting Cloze-Questions for Few-Shot Text Classification and Natural Language Inference, In EACL’21.

hypothesis ? | < MASK >, {premise}
• EntailmentYes
• ContradictionNo
• NeutralMaybe

Verbalizer
(injective function)

Discrete Prompt-based Learning: automatically learn prompts from training data
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Part 3 − Other Prompt-based Learning Methods

Prompt-based Learning and Robustness Evaluation

§ Manual Prompt Design:
In-Context Learning – Brown et al., Language Models are Few-Shot Learners, In NeurIPS’20.

Pattern Exploiting Training (PET) – Schick et al., Exploiting Cloze Questions for Few Shot Text 

Classification and Natural Language Inference, In EACL’21.

§ Mining and Paraphrasing-based Methods:
Jiang et al., How Can We Know What Language Models Know?, In TACL’20.

§ Gradient-based Search:
AutoPrompt – Shin et al., AutoPrompt: Eliciting Knowledge from Language Models with Automatically 

Generated Prompts, In EMNLP’20.

§ Automatic Prompt Generation:
Gao et al., Making Pre-trained Language Models Better Few-shot Learners, In ACL’21.
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Prompt-based Learning and Robustness Evaluation

Can we propose a Metric to measure the
semantic preserving distance between two prompts?
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Part 4 − Prompt Perturbation and Robustness
§ Prompt Perturbation: alter or modify the original input prompt or query to 

generate different or varied responses.
Question: Is semantic-preserving distance (maybe measuring the 
distance between deep features) essential to prompt perturbation?

§ Certified Robustness:
The model 𝑓(T) is certified robust if it satisfies the following condition for ∀𝑥

Prompt-based Learning and Robustness Evaluation

Credits: Zhang et al., Certified Robustness for Large Language Models with Self-Denoising, In arXiv’23.

𝑓 𝒙3 = 𝑦,

B𝒙3 − ‖𝒙 4 =E
567

8

𝕀(𝒙53 ≠ 𝒙5) ≤ 𝑑𝐿.

𝒙 = [𝑥7, 𝑥9, … , 𝑥8]: input to the LLM f(L)
B𝒙3 − ‖𝒙 4: Hamming Distance
𝕀(L): Indicator Function
𝑑: perturbation scale

define
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Part 4 − Prompt Perturbation and Robustness

Prompt-based Learning and Robustness Evaluation

Credits: ChatGPT.
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Part 5 − Prompt Robustness Evaluation

§ Rate of Degradation (RoD): the decrease in accuracy of the target task 
due to the perturbations added to the prompt.

§ A smaller RoD indicates a more robust model against perturbations

§ where 𝑥∗ is the perturbed version of the original prompt 𝑥, and avgacc7 and 
avgacc7∗ are the averaged accuracies over 𝑀 prompts

Prompt-based Learning and Robustness Evaluation

RoD =
avgaccd − avgaccd∗

avgaccd
= 1 −

avgaccd∗
avgaccd

,

Credits:
Meyers et al., Signal Processing on PV Time-series Data: Robust Degradation Analysis Without Physical Models, In IEEE Journal of Photovoltaics’19.
Ishibashi et al., Evaluating the Robustness of Discrete Prompts, In EACL’23.
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Thank you very much for your attention!


