### Prompt Perturbation and Robustness Evaluation

**Shuyue Jia** Ph.D. Student Boston University October 3rd, 2023

Dependable Computing Laboratory, Department of Electrical and Computer Engineering, **Boston University** 



### Outline

- **Probing** vs. Prompting
- Prompt Perturbation Category
- Prompt Perturbation Selected Works
- Robustness Problem Formulation
- Robustness Evaluation

Dependable Computing Laboratory, Department of Electrical and Computer Engineering, **Boston University** 



### Part 1 – Probing *vs.* Prompting

- Prompting: use natural language to query the LLMs with descriptions, instructions, goals, and examples.
- The way we access and interact with a language model.

#### Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.



Image Credits: In the public domain.

# Part 1 – Probing vs. Prompting



- Probing: the process of exploring what knowledge is encoded in the LLMs
- Probing classifier (diagnostic classifier) and linear probing (linear head)
- Representation-based Internal representation: different layers
- Attention-based Attention Weights

Images Credits: Medium Post – <u>Linguistics Wisdom of NLP Models</u>.

- Prompt Perturbation: alter or modify the original input prompt to generate semanticspreserving or varied responses.
- Category: different Granularities + Severities

(1) Character-level – Character Editing

Character swapping ("place"  $\Rightarrow$  "plcae"), deletion ("artist"  $\Rightarrow$  "arist"), insertion ("computer"  $\Rightarrow$ 

"computer"), substitution ("computer"  $\Rightarrow$  "computor"), and many more.

- (2) Word-level Word Manipulation
- (3) Sentence-level Paraphrasing and Style Transformation
- (4) Adversary-level Universal Adversarial Perturbation

Small and carefully crafted changes/perturbations that can be added to various input data

to cause machine learning models to make errors, e.g., misclassify input text

Credits: Li et al., A Survey on Out-of-Distribution Evaluation of Neural NLP Models, In arXiv'23.

- Different granularities Character-level Character Editing
- The process of making changes to characters in a text.
- Character Substituting/Replacing, Deleting, Inserting, or Swapping individual characters, Keyboard Typos (Typos and Misspellings), Optical Character Recognition (OCR), and Adding or Removing Special Symbols.

| Perturbation                                                            | Description                                                          |
|-------------------------------------------------------------------------|----------------------------------------------------------------------|
| Character Replacement (CR)                                              | Substitute character randomly with probability $p$ .                 |
| Character Deletion (CD)                                                 | Delete character randomly with probability $p$ .                     |
| Character Insertion (CI)                                                | Insert character randomly with probability $p$ .                     |
| Character Swap (CS)                                                     | Swap character randomly with probability $p$ .                       |
| Keyboard Typos                                                          | Substitute character by keyboard distance with probability $p$ .     |
| Optical Character Recognition (OCR)                                     | Substitute character by pre-defined OCR error with probability $p$ . |
| Special Symbols Inserting or Deletion                                   | Insert or delete Special Symbols randomly with probability $p$ .     |
| Credits: Qiu et al., Are Multimodal Models Robust to Image and Text Per | turbations?, In arXiv'23.                                            |

- Different granularities Character-level Character Editing
- The process of making changes to characters in a text. It involves substituting/replacing, deleting, inserting, or swapping individual characters, keyboard typos, optical character recognition (OCR), and Adding or Removing Special Symbols.

| Perturbation                                                                                                                  | Example                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Clean                                                                                                                         | An orange metal bowl strainer filled with apples.                          |
| Character Replacement (CR)                                                                                                    | An orange metal towl strainer fillet with apples.                          |
| Character Deletion (CD)                                                                                                       | An orang[X] metal bowl strainer fil[X]ed with apples.                      |
| Character Insertion (CI)                                                                                                      | And orange metal bowl strainer filled with atpples.                        |
| Character Swap (CS)                                                                                                           | An orange meatl bowl stariner filled with apples.                          |
| Keyboard Typos                                                                                                                | An orange metal bowk strainer filled witj apples.                          |
| Optical Character Recognition (OCR)                                                                                           | An Orange metal bowl strainer filled with apples.                          |
| Special Symbols Inserting or Deletion<br>Credits: Qiu <i>et al.</i> , Are Multimodal Models Robust to Image and Text Perturba | An orange metal bowl? strainer filled with apples!<br>tions?, In arXiv'23. |

- Different granularities Word-level Word Manipulation
- Words are replaced with other related words, *e.g.*, synonym replacement (SR), word insertion (WR), word swap (WS), word deletion (WD), and insert punctuation (IP)

| Perturbation             | Description                                                                                                                                                    |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Synonym Replacement (SR) | Randomly choose $n$ words from the sentence that are not stop words. Replace each of these words with one of its synonyms chosen at random.                    |
| Word Insertion (WI)      | Find a random synonym of a random word in the sentence that is not a stop word. Insert that synonym into a random position in the sentence. Do this $n$ times. |
| Word Swap (WS)           | Randomly choose two words in the sentence and swap their positions. Do this $n$ times.                                                                         |
| Word Deletion (WD)       | Each word in the sentence can be randomly removed with probability $p.$                                                                                        |
| Insert Punctuation (IP)  | Random insert punctuation in the sentence with probability $p$ .                                                                                               |

- Different granularities Word-level Word Manipulation
- Words are replaced with other related words, *e.g.*, synonym replacement (SR), word insertion (WR), word swap (WS), word deletion (WD), and insert punctuation (IP)

| Perturbation             | Example                                               |
|--------------------------|-------------------------------------------------------|
| Clean                    | An orange metal bowl strainer filled with apples.     |
| Synonym Replacement (SR) | An orange alloy bowl strainer filled with apples.     |
| Word Insertion (WI)      | An old orange metal bowl strainer filled with apples. |
| Word Swap (WS)           | An orange metal strainer bowl filled with apples.     |
| Word Deletion (WD)       | An orange metal bowl strainer [X] with apples.        |
| Insert Punctuation (IP)  | An orange metal bowl ? strainer filled with apples.   |

- Different granularities Sentence-level Paraphrasing
- Generates a lot of similar prompts (paraphrasing)
- Transfer the style of text into formal, casual, passive, and active

| Perturbation  | Description                                                                                                               |
|---------------|---------------------------------------------------------------------------------------------------------------------------|
| Paraphrasing  | Paraphrase the prompt, <i>e.g.,</i><br>Back Translation: Translate the source to German and translate it back to English. |
| Formal Style  | Transfer the text style to Formal.                                                                                        |
| Casual Style  | Transfer the text style to Casual.                                                                                        |
| Passive Style | Transfer the text style to Passive.                                                                                       |
| Active Style  | Transfer the text style to Active.                                                                                        |

- Different granularities Sentence-level Paraphrasing
- Generates a lot of similar prompts (paraphrasing)
- Transfer the style of text into **formal**, **casual**, **passive**, and **active** styles

| Perturbation  | Example                                             |
|---------------|-----------------------------------------------------|
| Clean         | An orange metal bowl strainer filled with apples.   |
| Paraphrasing  | Apples are placed in an orange metal bowl strainer. |
| Formal Style  | An orange metal bowl strainer contains apples.      |
| Casual Style  | An orange metal bowl is filled with apples.         |
| Passive Style | Some apples are in an orange metal bowl strainer.   |
| Active Style  | There are apples in an orange metal bowl strainer.  |

# **Part 2** – Prompt Perturbation Category

- Different granularities Adversary-level Universal Adversarial Perturbation <sup>[1]</sup>
- Universal adversarial triggers: input-agnostic sequences of tokens that trigger a model to produce a specific prediction when concatenated to any input from a dataset<sup>[2]</sup>.

| Input (red = trigger)                                                                                                                                                                                       | Model Prediction            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| <b>zoning tapping fiennes</b> Visually imaginative, thematically instructive and thoroughly delightful, it takes us on a roller-coaster ride                                                                | Positive → Negative         |
| <b>zoning tapping fiennes</b> As surreal as a dream and as detailed as a photogra<br>as visually dexterous as it is at times imaginatively overwhelming.                                                    | aph,<br>Positive → Negative |
| Credits:<br>[1] Moosavi-Dezfooli <i>et al.</i> , Universal Adversarial Perturbations, In CVPR'17.<br>[2] Wallace <i>et al.</i> , Universal Adversarial Triggers for Attacking and Analyzing NLP. In arXiv'2 | 3.                          |

- Category: different Granularities + Severities
- (1) Character-level Character Editing (7)
  - Character Replacement (CR), Character Deletion (CD), Character Insertion (CI), Character Swap (CS), Keyboard Typos (KT), Optical Character Recognition (OCR), Special Symbols Insertion or Deletion (SS)
- (2) Word-level Word Manipulation (5)
  - Synonym Replacement (SR), Word Insertion (WR), Word Swap (WS), Word Deletion (WD), Insert Punctuation (IP)
- (3) Sentence-level Paraphrasing and Style Transformation (5)
  - Paraphrasing (PP), Formal Style (FS), Casual Style (CAS), Passive Style (PS), Active Style (AS)
- (4) Adversary-level Universal Adversarial Perturbation (1)
  - Universal Adversarial Triggers (UAT)

**Recall@K**: how many relevant items were returned *in the first K items* against how many relevant items exist in the entire

dataset (TP+FN); **RSUM**: the sum of recall R@K metric

Table 23. ViLT text perturbation performance comparison of Fine-tuned (FT) image-text retrieval on Flickr30K and COCO datasets (results are averaged on five perturbation levels).

|           |            |      |        |           | Fli  | ckr30K | (1K)  |           |      |       | MSCOCO (5K) |        |           |      |             |       |           |      |       |  |
|-----------|------------|------|--------|-----------|------|--------|-------|-----------|------|-------|-------------|--------|-----------|------|-------------|-------|-----------|------|-------|--|
|           | Method     |      | Text F | Retrieval |      |        | Image | Retrieval |      |       |             | Text F | Retrieval |      |             | Image | Retrieval |      |       |  |
|           |            | R@1  | R@5    | R@10      | Mean | R@1    | R@5   | R@10      | Mean | RSUM  | R@1         | R@5    | R@10      | Mean | <b>R@</b> 1 | R@5   | R@10      | Mean | RSUM  |  |
|           | Keyboard   | 55.6 | 82.9   | 89.3      | 75.9 | 31.8   | 57.7  | 68.0      | 52.5 | 385.3 | 40.3        | 69.6   | 79.9      | 63.3 | 23.1        | 47.3  | 59.0      | 43.1 | 319.2 |  |
|           | Ocr        | 71.1 | 92.0   | 96.1      | 86.4 | 45.8   | 74.1  | 82.8      | 67.6 | 462.0 | 51.9        | 80.1   | 88.5      | 73.5 | 32.5        | 60.8  | 72.5      | 55.2 | 386.2 |  |
| Character | CI         | 55.3 | 83.2   | 90.1      | 76.2 | 31.9   | 58.5  | 68.9      | 53.1 | 388.0 | 41.1        | 70.8   | 81.4      | 64.4 | 24.0        | 48.9  | 60.8      | 44.6 | 327.0 |  |
| Character | CR         | 55.7 | 82.5   | 90.1      | 76.1 | 31.8   | 57.7  | 68.3      | 52.6 | 386.2 | 40.8        | 69.8   | 80.5      | 63.7 | 23.5        | 47.7  | 59.4      | 43.5 | 321.7 |  |
|           | CS         | 57.6 | 83.8   | 90.7      | 77.4 | 33.7   | 59.8  | 70.0      | 54.5 | 395.6 | 42.3        | 72.2   | 82.0      | 65.5 | 24.9        | 49.9  | 61.7      | 45.5 | 333.1 |  |
|           | CD         | 57.3 | 84.0   | 90.8      | 77.4 | 34.6   | 60.9  | 71.0      | 55.5 | 398.6 | 42.3        | 71.9   | 82.3      | 65.5 | 25.1        | 50.3  | 62.3      | 45.9 | 334.1 |  |
|           | SR         | 71.0 | 92.4   | 96.1      | 86.5 | 48.9   | 77.4  | 86.0      | 70.8 | 471.9 | 52.8        | 80.9   | 88.9      | 74.2 | 35.2        | 64.3  | 75.7      | 58.4 | 397.8 |  |
|           | WI         | 75.0 | 94.0   | 97.3      | 88.8 | 53.9   | 82.4  | 89.5      | 75.3 | 492.2 | 56.5        | 83.4   | 90.9      | 76.9 | 38.6        | 68.4  | 79.7      | 62.2 | 417.5 |  |
| Word      | WS         | 71.6 | 93.0   | 96.8      | 87.1 | 50.4   | 80.2  | 88.1      | 72.9 | 480.1 | 53.7        | 81.4   | 89.5      | 74.9 | 35.8        | 66.0  | 78.0      | 60.0 | 404.4 |  |
|           | WD         | 74.3 | 93.9   | 97.3      | 88.5 | 53.0   | 82.0  | 89.3      | 74.8 | 489.8 | 55.6        | 82.5   | 90.3      | 76.2 | 37.8        | 68.0  | 79.4      | 61.7 | 413.6 |  |
|           | IP         | 79.5 | 95.7   | 98.0      | 91.1 | 58.1   | 85.0  | 91.3      | 78.1 | 507.7 | 59.9        | 85.4   | 92.0      | 79.1 | 41.8        | 71.6  | 82.3      | 65.2 | 433.1 |  |
|           | Formal     | 79.5 | 95.7   | 98.6      | 91.3 | 59.2   | 85.6  | 91.5      | 78.8 | 510.1 | 61.1        | 85.8   | 92.2      | 79.7 | 42.6        | 72.2  | 82.6      | 65.8 | 436.5 |  |
|           | Casual     | 78.1 | 95.5   | 97.8      | 90.5 | 57.3   | 84.9  | 90.9      | 77.7 | 504.5 | 60.0        | 85.5   | 91.7      | 79.1 | 42.2        | 71.9  | 82.4      | 65.5 | 433.6 |  |
| Sentence  | Passive    | 74.0 | 94.6   | 97.4      | 88.7 | 53.2   | 80.8  | 88.1      | 74.0 | 488.1 | 57.9        | 84.4   | 91.4      | 77.9 | 40.0        | 69.3  | 80.2      | 63.2 | 423.2 |  |
|           | Active     | 78.5 | 95.1   | 98.3      | 90.6 | 58.6   | 85.7  | 92.1      | 78.8 | 508.3 | 60.9        | 85.9   | 92.2      | 79.7 | 42.9        | 72.3  | 82.9      | 66.0 | 437.1 |  |
|           | Back_trans | 78.0 | 94.8   | 98.0      | 90.3 | 56.1   | 83.0  | 90.2      | 76.4 | 500.1 | 59.1        | 84.4   | 91.3      | 78.3 | 40.5        | 69.9  | 80.7      | 63.7 | 426.0 |  |

Flickr30K/COCO dataset: 1,000/5,000 images, each with 5 corresponding captions

Table 24. CLIP text perturbation performance comparison of Zero-Shot (ZS) image-text retrieval on Flickr30K and COCO datasets (results are averaged on five perturbation levels).

|           |            |      |        |           | Fli  | ckr30K | (1K)  |           |      | MSCOCO (5K) |      |        |           |      |      |       |           |      |       |
|-----------|------------|------|--------|-----------|------|--------|-------|-----------|------|-------------|------|--------|-----------|------|------|-------|-----------|------|-------|
|           | Method     |      | Text F | Retrieval |      |        | Image | Retrieval |      |             |      | Text F | Retrieval |      |      | Image | Retrieval | L    |       |
|           |            | R@1  | R@5    | R@10      | Mean | R@1    | R@5   | R@10      | Mean | RSUM        | R@1  | R@5    | R@10      | Mean | R@1  | R@5   | R@10      | Mean | RSUM  |
|           | Keyboard   | 62.4 | 86.9   | 93.1      | 80.8 | 43.5   | 68.8  | 77.0      | 63.1 | 431.8       | 36.8 | 62.1   | 72.8      | 57.2 | 21.0 | 41.2  | 51.6      | 37.9 | 285.5 |
|           | Ocr        | 73.4 | 93.2   | 96.7      | 87.8 | 52.9   | 77.3  | 84.6      | 71.6 | 478.2       | 37.2 | 62.2   | 72.6      | 57.4 | 21.1 | 41.5  | 51.8      | 38.1 | 286.4 |
| Character | CI         | 66.4 | 89.6   | 94.7      | 83.6 | 47.3   | 72.3  | 80.2      | 66.6 | 450.5       | 37.0 | 62.1   | 72.8      | 57.3 | 21.2 | 41.4  | 51.6      | 38.1 | 286.1 |
| Character | CR         | 63.0 | 88.4   | 93.8      | 81.7 | 44.1   | 68.7  | 77.2      | 63.3 | 435.2       | 36.6 | 62.1   | 72.7      | 57.1 | 21.0 | 41.4  | 51.7      | 38.0 | 285.4 |
|           | CS         | 65.5 | 89.3   | 94.9      | 83.2 | 45.7   | 70.4  | 78.7      | 65.0 | 444.6       | 36.5 | 62.2   | 72.6      | 57.1 | 21.1 | 41.4  | 51.8      | 38.1 | 285.6 |
|           | CD         | 66.3 | 90.4   | 95.4      | 84.0 | 47.2   | 71.9  | 80.1      | 66.4 | 451.3       | 36.6 | 62.2   | 73.0      | 57.3 | 21.1 | 41.4  | 51.6      | 38.0 | 285.8 |
|           | SR         | 76.0 | 95.1   | 98.0      | 89.7 | 58.0   | 81.7  | 88.2      | 76.0 | 497.1       | 47.0 | 72.8   | 81.8      | 67.2 | 29.2 | 53.0  | 63.6      | 48.6 | 347.5 |
|           | WI         | 78.3 | 95.7   | 98.3      | 90.8 | 61.6   | 84.9  | 90.9      | 79.1 | 509.6       | 49.9 | 74.9   | 83.5      | 69.4 | 32.1 | 56.5  | 66.9      | 51.8 | 363.8 |
| Word      | WS         | 77.2 | 95.1   | 98.0      | 90.1 | 59.7   | 83.6  | 89.8      | 77.7 | 503.3       | 48.9 | 73.6   | 82.3      | 68.3 | 30.6 | 54.7  | 65.3      | 50.2 | 355.5 |
|           | WD         | 80.9 | 96.8   | 98.5      | 92.1 | 61.4   | 85.4  | 91.1      | 79.3 | 514.1       | 51.7 | 76.4   | 84.6      | 70.9 | 32.3 | 56.5  | 67.1      | 51.9 | 368.6 |
|           | IP         | 81.8 | 97.1   | 98.8      | 92.6 | 63.8   | 86.1  | 91.6      | 80.5 | 519.4       | 52.4 | 76.6   | 84.5      | 71.2 | 34.1 | 58.2  | 68.4      | 53.6 | 374.2 |
|           | Formal     | 86.4 | 98.6   | 99.1      | 94.7 | 66.0   | 88.5  | 93.1      | 82.5 | 531.7       | 56.8 | 80.4   | 87.7      | 75.0 | 36.4 | 60.9  | 70.8      | 56.0 | 393.0 |
|           | Casual     | 84.9 | 97.9   | 99.2      | 94.0 | 66.1   | 88.4  | 92.8      | 82.4 | 529.3       | 57.1 | 79.6   | 87.7      | 74.8 | 35.9 | 60.6  | 70.7      | 55.7 | 391.6 |
| Sentence  | Passive    | 84.3 | 96.9   | 99.2      | 93.5 | 64.8   | 87.3  | 92.2      | 81.5 | 524.8       | 54.3 | 77.8   | 86.1      | 72.7 | 34.1 | 58.4  | 68.9      | 53.8 | 379.6 |
|           | Active     | 85.6 | 97.9   | 99.2      | 94.2 | 66.9   | 88.8  | 93.1      | 82.9 | 531.4       | 57.5 | 80.3   | 87.9      | 75.2 | 36.1 | 60.8  | 70.9      | 55.9 | 393.5 |
|           | Back_trans | 83.9 | 97.0   | 98.5      | 93.1 | 65.5   | 87.2  | 92.2      | 81.6 | 524.2       | 55.1 | 78.2   | 85.7      | 73.0 | 34.3 | 58.9  | 69.1      | 54.1 | 381.2 |

Table 25. CLIP text perturbation performance comparison of Fine-tuned (FT) image-text retrieval on Flickr30K and COCO datasets (results are averaged on five perturbation levels).

|           |            |      |        |           | Fli  | ckr30K | (1K)  |           |      |       | MSCOCO (5K) |        |           |      |      |       |           |      |       |
|-----------|------------|------|--------|-----------|------|--------|-------|-----------|------|-------|-------------|--------|-----------|------|------|-------|-----------|------|-------|
|           | Method     |      | Text F | Retrieval |      |        | Image | Retrieval |      |       |             | Text F | Retrieval |      |      | Image | Retrieval |      |       |
|           |            | R@1  | R@5    | R@10      | Mean | R@1    | R@5   | R@10      | Mean | RSUM  | R@1         | R@5    | R@10      | Mean | R@1  | R@5   | R@10      | Mean | RSUM  |
|           | Keyboard   | 67.0 | 91.2   | 96.2      | 84.8 | 48.3   | 74.0  | 81.6      | 68.0 | 458.4 | 36.8        | 66.1   | 78.1      | 60.3 | 24.3 | 49.4  | 61.3      | 45.0 | 316.1 |
|           | Ocr        | 76.2 | 95.4   | 98.4      | 90.0 | 58.5   | 83.3  | 89.1      | 77.0 | 500.9 | 36.8        | 66.3   | 77.9      | 60.4 | 24.4 | 49.7  | 61.5      | 45.2 | 316.7 |
| Character | CI         | 71.4 | 93.3   | 96.8      | 87.2 | 53.2   | 78.1  | 84.8      | 72.0 | 477.6 | 36.3        | 66.6   | 78.2      | 60.4 | 24.4 | 49.6  | 61.4      | 45.1 | 316.5 |
| Character | CR         | 68.9 | 91.7   | 96.1      | 85.6 | 48.7   | 74.5  | 81.7      | 68.3 | 461.6 | 36.5        | 66.3   | 78.1      | 60.3 | 24.3 | 49.7  | 61.5      | 45.2 | 316.4 |
|           | CS         | 70.7 | 92.4   | 96.6      | 86.6 | 51.0   | 76.6  | 83.7      | 70.4 | 471.1 | 36.5        | 66.5   | 78.2      | 60.4 | 24.4 | 49.6  | 61.4      | 45.1 | 316.7 |
|           | CD         | 70.9 | 93.3   | 97.2      | 87.2 | 52.1   | 77.5  | 84.5      | 71.3 | 475.5 | 36.7        | 66.1   | 77.9      | 60.3 | 24.2 | 49.5  | 61.3      | 45.0 | 315.6 |
|           | SR         | 78.0 | 96.4   | 98.5      | 91.0 | 63.4   | 87.2  | 92.0      | 80.9 | 515.4 | 45.3        | 75.0   | 85.1      | 68.5 | 33.8 | 62.7  | 74.3      | 56.9 | 376.2 |
|           | WI         | 81.0 | 97.0   | 99.0      | 92.3 | 68.3   | 90.4  | 94.7      | 84.4 | 530.4 | 48.4        | 77.3   | 86.8      | 70.8 | 37.3 | 66.8  | 78.1      | 60.7 | 394.6 |
| Word      | WS         | 80.8 | 97.0   | 99.0      | 92.2 | 66.1   | 89.3  | 93.9      | 83.1 | 526.0 | 48.0        | 77.1   | 86.7      | 70.6 | 35.9 | 65.3  | 76.9      | 59.4 | 389.9 |
|           | WD         | 81.0 | 97.4   | 99.1      | 92.5 | 67.9   | 90.7  | 95.0      | 84.5 | 531.1 | 49.1        | 77.7   | 86.8      | 71.2 | 37.1 | 66.7  | 78.0      | 60.6 | 395.3 |
|           | IP         | 83.0 | 97.9   | 99.2      | 93.4 | 69.9   | 91.2  | 95.1      | 85.4 | 536.4 | 51.5        | 79.5   | 88.1      | 73.0 | 39.1 | 68.7  | 79.6      | 62.5 | 406.6 |
|           | Formal     | 85.2 | 98.4   | 99.5      | 94.4 | 73.3   | 92.9  | 96.4      | 87.6 | 545.8 | 53.5        | 81.0   | 88.9      | 74.5 | 41.7 | 70.8  | 81.3      | 64.6 | 417.3 |
|           | Casual     | 83.9 | 97.6   | 99.4      | 93.6 | 72.5   | 92.3  | 96.4      | 87.1 | 542.1 | 52.5        | 80.6   | 89.0      | 74.0 | 41.4 | 70.4  | 81.2      | 64.4 | 415.2 |
| Sentence  | Passive    | 82.9 | 97.7   | 99.1      | 93.2 | 71.3   | 91.3  | 95.6      | 86.1 | 537.9 | 51.9        | 80.0   | 88.3      | 73.4 | 39.6 | 68.9  | 80.0      | 62.8 | 408.7 |
|           | Active     | 85.0 | 97.6   | 99.4      | 94.0 | 73.5   | 92.9  | 96.6      | 87.7 | 545.1 | 54.1        | 81.4   | 89.0      | 74.8 | 42.2 | 71.1  | 81.7      | 65.0 | 419.4 |
|           | Back_trans | 83.8 | 97.7   | 99.0      | 93.5 | 70.4   | 91.2  | 95.2      | 85.6 | 537.3 | 51.4        | 79.1   | 88.2      | 72.9 | 39.6 | 68.5  | 79.5      | 62.5 | 406.2 |

Table 26. BLIP text perturbation performance comparison of Fine-tuned (FT) image-text retrieval on Flickr30K and COCO datasets (results are averaged on five perturbation levels).

|           |            |      |        |           | Fli  | ckr30K | (1K)  |           |      |       | MSCOCO (5K) |        |           |      |      |       |           |      |       |  |
|-----------|------------|------|--------|-----------|------|--------|-------|-----------|------|-------|-------------|--------|-----------|------|------|-------|-----------|------|-------|--|
|           | Method     |      | Text F | Retrieval |      |        | Image | Retrieval |      |       |             | Text F | Retrieval |      |      | Image | Retrieval |      |       |  |
|           |            | R@1  | R@5    | R@10      | Mean | R@1    | R@5   | R@10      | Mean | RSUM  | R@1         | R@5    | R@10      | Mean | R@1  | R@5   | R@10      | Mean | RSUM  |  |
|           | Keyboard   | 84.5 | 97.3   | 98.9      | 93.6 | 63.8   | 84.1  | 89.4      | 79.1 | 518.0 | 64.1        | 86.4   | 91.9      | 80.8 | 42.7 | 67.5  | 76.6      | 62.2 | 429.1 |  |
|           | Ocr        | 93.6 | 99.5   | 99.8      | 97.6 | 77.5   | 93.1  | 96.0      | 88.9 | 559.5 | 74.3        | 92.2   | 96.0      | 87.5 | 53.6 | 77.7  | 85.3      | 72.2 | 479.1 |  |
| Character | CI         | 86.6 | 98.0   | 99.3      | 94.7 | 66.3   | 86.1  | 90.9      | 81.1 | 527.3 | 66.7        | 88.1   | 93.4      | 82.7 | 45.0 | 70.2  | 79.0      | 64.7 | 442.4 |  |
| Character | CR         | 84.6 | 97.5   | 99.0      | 93.7 | 63.9   | 83.8  | 89.2      | 79.0 | 518.0 | 64.5        | 86.7   | 92.1      | 81.1 | 42.9 | 67.7  | 76.9      | 62.5 | 430.8 |  |
|           | CS         | 87.4 | 97.9   | 99.3      | 94.9 | 65.9   | 85.4  | 90.5      | 80.6 | 526.4 | 67.0        | 88.1   | 93.2      | 82.8 | 44.6 | 69.7  | 78.6      | 64.3 | 441.3 |  |
|           | CD         | 86.8 | 97.7   | 99.2      | 94.6 | 65.9   | 85.7  | 90.4      | 80.7 | 525.7 | 67.0        | 88.1   | 93.3      | 82.8 | 44.8 | 69.7  | 78.6      | 64.4 | 441.4 |  |
|           | SR         | 93.8 | 99.6   | 99.9      | 97.8 | 80.6   | 94.7  | 97.0      | 90.7 | 565.6 | 74.2        | 92.4   | 96.1      | 87.6 | 55.5 | 79.5  | 86.7      | 73.9 | 484.3 |  |
|           | WI         | 96.0 | 99.8   | 99.9      | 98.6 | 85.0   | 96.9  | 98.5      | 93.4 | 576.1 | 78.1        | 94.0   | 97.1      | 89.7 | 60.1 | 83.2  | 89.6      | 77.6 | 502.1 |  |
| Word      | WS         | 94.8 | 99.6   | 100.0     | 98.1 | 83.6   | 96.5  | 98.4      | 92.8 | 572.9 | 75.9        | 93.2   | 96.6      | 88.6 | 58.1 | 82.0  | 88.9      | 76.3 | 494.6 |  |
|           | WD         | 95.1 | 99.8   | 100.0     | 98.3 | 83.8   | 96.7  | 98.5      | 93.0 | 573.8 | 77.3        | 93.9   | 97.0      | 89.4 | 59.2 | 82.7  | 89.5      | 77.1 | 499.7 |  |
|           | IP         | 97.3 | 99.9   | 100.0     | 99.0 | 87.2   | 97.5  | 98.9      | 94.5 | 580.7 | 81.8        | 95.4   | 97.8      | 91.7 | 63.9 | 85.6  | 91.3      | 80.3 | 515.8 |  |
|           | Formal     | 96.5 | 99.9   | 100.0     | 98.8 | 86.7   | 97.1  | 98.8      | 94.2 | 579.0 | 81.7        | 95.2   | 97.6      | 91.5 | 63.5 | 85.3  | 91.2      | 80.0 | 514.4 |  |
|           | Casual     | 96.8 | 100.0  | 100.0     | 98.9 | 86.0   | 97.1  | 98.7      | 93.9 | 578.6 | 81.3        | 95.0   | 97.7      | 91.3 | 63.4 | 85.1  | 91.1      | 79.8 | 513.6 |  |
| Sentence  | Passive    | 96.8 | 99.8   | 99.9      | 98.8 | 83.3   | 96.5  | 98.2      | 92.7 | 574.5 | 80.5        | 94.7   | 97.3      | 90.8 | 61.7 | 83.8  | 90.2      | 78.6 | 508.1 |  |
|           | Active     | 97.1 | 99.9   | 100.0     | 99.0 | 86.6   | 97.2  | 98.7      | 94.2 | 579.6 | 81.6        | 95.2   | 97.7      | 91.5 | 64.0 | 85.5  | 91.3      | 80.3 | 515.4 |  |
|           | Back_trans | 96.0 | 99.9   | 100.0     | 98.6 | 84.5   | 96.1  | 98.2      | 92.9 | 574.7 | 79.9        | 94.2   | 97.0      | 90.4 | 61.0 | 82.9  | 89.3      | 77.8 | 504.3 |  |

Table 27. ALBEF text perturbation performance comparison of Fine-tuned (FT) image-text retrieval on Flickr30K and COCO datasets (results are averaged on five perturbation levels).

|           |            |      |        |           | Fli  | ckr30K | (1K)  |           |      | MSCOCO (5K) |      |        |           |      |      |       |           |      |       |
|-----------|------------|------|--------|-----------|------|--------|-------|-----------|------|-------------|------|--------|-----------|------|------|-------|-----------|------|-------|
|           | Method     |      | Text F | Retrieval |      |        | Image | Retrieval |      |             |      | Text F | Retrieval |      |      | Image | Retrieval |      |       |
|           |            | R@1  | R@5    | R@10      | Mean | R@1    | R@5   | R@10      | Mean | RSUM        | R@1  | R@5    | R@10      | Mean | R@1  | R@5   | R@10      | Mean | RSUM  |
|           | Keyboard   | 82.1 | 96.0   | 98.5      | 92.2 | 59.7   | 82.1  | 87.7      | 76.5 | 506.2       | 57.9 | 82.6   | 89.6      | 76.7 | 38.0 | 63.4  | 73.0      | 58.1 | 404.5 |
|           | Ocr        | 91.3 | 99.2   | 99.6      | 96.7 | 74.6   | 92.1  | 95.1      | 87.3 | 552.0       | 69.3 | 89.9   | 94.8      | 84.7 | 49.5 | 74.9  | 83.3      | 69.2 | 461.7 |
| Character | CI         | 84.4 | 97.2   | 98.6      | 93.4 | 62.5   | 84.2  | 89.2      | 78.6 | 516.2       | 60.8 | 84.7   | 91.0      | 78.8 | 40.6 | 66.2  | 75.6      | 60.8 | 418.9 |
| Character | CR         | 82.1 | 95.9   | 98.4      | 92.1 | 59.9   | 81.6  | 87.2      | 76.2 | 505.0       | 58.3 | 82.9   | 89.9      | 77.0 | 38.3 | 63.6  | 73.1      | 58.3 | 406.1 |
|           | CS         | 82.9 | 96.8   | 98.8      | 92.8 | 61.6   | 83.2  | 88.4      | 77.7 | 511.7       | 59.9 | 84.1   | 90.8      | 78.3 | 39.8 | 65.3  | 74.8      | 60.0 | 414.7 |
|           | CD         | 83.6 | 96.7   | 98.5      | 92.9 | 61.9   | 83.6  | 88.7      | 78.1 | 513.0       | 60.0 | 84.1   | 90.8      | 78.3 | 39.9 | 65.7  | 75.1      | 60.2 | 415.5 |
|           | SR         | 92.9 | 99.2   | 99.8      | 97.3 | 78.7   | 94.5  | 96.8      | 90.0 | 561.9       | 70.1 | 90.6   | 95.1      | 85.3 | 52.4 | 77.7  | 85.5      | 71.9 | 471.4 |
|           | WI         | 94.3 | 99.6   | 99.9      | 97.9 | 82.9   | 96.6  | 98.3      | 92.6 | 571.6       | 73.2 | 92.4   | 96.3      | 87.3 | 56.8 | 81.6  | 88.7      | 75.7 | 488.9 |
| Word      | WS         | 93.3 | 99.4   | 99.9      | 97.6 | 81.5   | 96.3  | 98.1      | 92.0 | 568.6       | 72.0 | 91.8   | 96.1      | 86.6 | 55.1 | 80.6  | 88.2      | 74.6 | 483.7 |
|           | WD         | 93.4 | 99.5   | 99.9      | 97.6 | 82.2   | 96.5  | 98.3      | 92.4 | 570.0       | 72.9 | 92.1   | 96.1      | 87.0 | 55.7 | 81.1  | 88.5      | 75.1 | 486.3 |
|           | IP         | 95.9 | 99.8   | 100.0     | 98.6 | 85.5   | 97.5  | 98.9      | 94.0 | 577.7       | 77.6 | 94.3   | 97.2      | 89.7 | 60.7 | 84.3  | 90.5      | 78.5 | 504.5 |
|           | Formal     | 95.4 | 99.7   | 99.9      | 98.3 | 85.2   | 97.3  | 98.7      | 93.7 | 576.2       | 77.6 | 94.1   | 97.0      | 89.6 | 60.2 | 83.9  | 90.3      | 78.1 | 503.1 |
|           | Casual     | 95.1 | 99.7   | 100.0     | 98.3 | 84.6   | 97.1  | 98.5      | 93.4 | 575.0       | 77.1 | 94.1   | 97.4      | 89.5 | 59.7 | 83.6  | 90.1      | 77.8 | 502.0 |
| Sentence  | Passive    | 94.6 | 99.4   | 100.0     | 98.0 | 81.5   | 96.1  | 98.0      | 91.8 | 569.5       | 76.1 | 93.4   | 96.7      | 88.7 | 58.4 | 82.6  | 89.2      | 76.7 | 496.4 |
|           | Active     | 95.6 | 99.8   | 100.0     | 98.5 | 85.0   | 97.3  | 98.7      | 93.7 | 576.4       | 77.5 | 94.2   | 97.1      | 89.6 | 60.4 | 84.2  | 90.3      | 78.3 | 503.7 |
|           | Back_trans | 95.9 | 99.7   | 99.9      | 98.5 | 83.0   | 96.1  | 98.0      | 92.3 | 572.5       | 75.2 | 93.0   | 96.4      | 88.2 | 57.4 | 81.0  | 88.3      | 75.6 | 491.3 |

Table 28. TCL text perturbation performance comparison of Zero-Shot (ZS) image-text retrieval on Flickr30K and COCO datasets (results are averaged on five perturbation levels).

|           |            |      | Flickr30K (1K) |           |      |      |       |           |      | MSCOCO (5K) |      |        |           |      |             |       |           |      |       |
|-----------|------------|------|----------------|-----------|------|------|-------|-----------|------|-------------|------|--------|-----------|------|-------------|-------|-----------|------|-------|
|           | Method     |      | Text F         | Retrieval |      |      | Image | Retrieval |      |             |      | Text F | Retrieval |      |             | Image | Retrieval |      |       |
|           |            |      | R@5            | R@10      | Mean | R@1  | R@5   | R@10      | Mean | RSUM        | R@1  | R@5    | R@10      | Mean | <b>R@</b> 1 | R@5   | R@10      | Mean | RSUM  |
|           | Keyboard   | 63.8 | 87.2           | 92.7      | 81.2 | 44.1 | 68.8  | 76.7      | 63.2 | 433.3       | 49.6 | 76.1   | 84.9      | 70.2 | 32.3        | 57.2  | 67.8      | 52.4 | 368.0 |
|           | Ocr        | 78.2 | 94.8           | 97.9      | 90.3 | 58.8 | 82.1  | 88.1      | 76.3 | 499.9       | 61.4 | 85.1   | 91.6      | 79.4 | 42.6        | 69.0  | 78.7      | 63.4 | 428.4 |
| Character | CI         | 67.3 | 88.0           | 93.4      | 82.9 | 45.9 | 70.5  | 78.3      | 64.9 | 443.3       | 51.9 | 78.5   | 86.7      | 72.4 | 34.1        | 59.8  | 70.3      | 54.7 | 381.3 |
| Character | CR         | 63.1 | 85.9           | 91.4      | 80.1 | 43.8 | 68.1  | 76.1      | 62.7 | 428.4       | 49.7 | 76.1   | 85.1      | 70.3 | 32.2        | 57.4  | 67.9      | 52.5 | 368.4 |
|           | CS         | 66.5 | 88.6           | 93.8      | 83.0 | 46.3 | 70.8  | 78.5      | 65.2 | 444.4       | 52.6 | 78.5   | 87.0      | 72.7 | 34.0        | 59.7  | 70.1      | 54.6 | 382.0 |
|           | CD         | 66.7 | 89.4           | 94.2      | 83.4 | 47.2 | 71.9  | 79.4      | 66.2 | 448.9       | 52.6 | 78.8   | 86.9      | 72.8 | 34.3        | 60.2  | 70.6      | 55.0 | 383.4 |
|           | SR         | 78.3 | 95.3           | 97.9      | 90.5 | 63.2 | 86.0  | 91.1      | 80.1 | 511.9       | 62.1 | 85.7   | 91.9      | 79.9 | 45.8        | 72.3  | 81.5      | 66.5 | 439.3 |
|           | WI         | 80.0 | 96.3           | 98.5      | 91.6 | 67.0 | 88.6  | 93.4      | 83.0 | 523.8       | 63.3 | 86.8   | 93.0      | 81.0 | 49.5        | 76.1  | 84.7      | 70.1 | 453.4 |
| Word      | WS         | 80.4 | 95.9           | 98.4      | 91.6 | 64.8 | 87.2  | 92.4      | 81.5 | 519.1       | 63.2 | 86.5   | 92.7      | 80.8 | 46.5        | 73.8  | 83.0      | 67.8 | 445.7 |
|           | WD         | 83.6 | 97.1           | 98.8      | 93.1 | 67.0 | 89.0  | 93.4      | 83.1 | 528.8       | 65.3 | 87.2   | 93.1      | 81.9 | 47.6        | 74.4  | 83.3      | 68.4 | 450.9 |
|           | IP         | 89.4 | 98.6           | 99.6      | 95.9 | 73.4 | 92.2  | 95.5      | 87.0 | 548.6       | 71.4 | 90.8   | 95.4      | 85.9 | 53.5        | 79.0  | 87.1      | 73.2 | 477.2 |
|           | Formal     | 88.0 | 98.0           | 99.8      | 95.3 | 72.0 | 91.6  | 95.1      | 86.2 | 544.4       | 70.8 | 90.6   | 95.2      | 85.5 | 52.9        | 78.4  | 86.5      | 72.6 | 474.4 |
|           | Casual     | 87.2 | 98.3           | 99.5      | 95.0 | 71.4 | 91.2  | 94.8      | 85.8 | 542.4       | 69.9 | 90.2   | 94.9      | 85.0 | 52.3        | 78.1  | 86.4      | 72.3 | 471.8 |
| Sentence  | Passive    | 84.5 | 97.1           | 99.4      | 93.7 | 67.6 | 88.6  | 92.9      | 83.0 | 530.1       | 68.6 | 89.1   | 94.4      | 84.0 | 50.5        | 76.9  | 85.2      | 70.9 | 464.7 |
|           | Active     | 89.3 | 98.3           | 99.9      | 95.8 | 72.9 | 91.5  | 95.1      | 86.5 | 547.1       | 70.9 | 90.6   | 95.3      | 85.6 | 53.1        | 78.9  | 86.9      | 73.0 | 475.7 |
|           | Back_trans | 86.0 | 97.6           | 99.4      | 94.3 | 69.4 | 89.8  | 93.6      | 84.3 | 535.8       | 68.5 | 89.2   | 94.2      | 83.9 | 50.3        | 75.9  | 84.1      | 70.1 | 462.0 |

Table 29. TCL text perturbation performance comparison of Fine-tuned (FT) image-text retrieval on Flickr30K and COCO datasets (results are averaged on five perturbation levels).

|           |            |      | Flickr30K (1K) |           |      |      |       |           | MSCOCO (5K) |       |      |        |           |      |      |       |           |      |       |
|-----------|------------|------|----------------|-----------|------|------|-------|-----------|-------------|-------|------|--------|-----------|------|------|-------|-----------|------|-------|
|           | Method     |      | Text H         | Retrieval |      |      | Image | Retrieval |             |       |      | Text F | Retrieval |      |      | Image | Retrieval |      |       |
|           |            | R@1  | R@5            | R@10      | Mean | R@1  | R@5   | R@10      | Mean        | RSUM  | R@1  | R@5    | R@10      | Mean | R@1  | R@5   | R@10      | Mean | RSUM  |
|           | Keyboard   | 79.7 | 95.2           | 97.9      | 90.9 | 57.0 | 79.1  | 85.4      | 73.8        | 494.3 | 55.8 | 81.3   | 88.8      | 75.3 | 36.9 | 62.5  | 72.4      | 57.3 | 397.8 |
|           | Ocr        | 90.0 | 99.1           | 99.7      | 96.3 | 71.7 | 90.4  | 94.0      | 85.4        | 545.0 | 67.6 | 88.9   | 94.0      | 83.5 | 48.0 | 73.9  | 82.6      | 68.2 | 455.1 |
| Character | CI         | 82.2 | 96.2           | 98.3      | 92.2 | 59.6 | 81.4  | 87.2      | 76.1        | 504.9 | 58.5 | 83.5   | 90.4      | 77.5 | 39.3 | 65.3  | 75.0      | 59.8 | 412.0 |
| Character | CR         | 79.3 | 94.8           | 97.8      | 90.7 | 56.7 | 79.1  | 85.0      | 73.6        | 492.8 | 55.6 | 81.5   | 89.0      | 75.4 | 37.2 | 62.7  | 72.5      | 57.5 | 398.5 |
|           | CS         | 80.7 | 96.0           | 98.2      | 91.6 | 59.0 | 81.2  | 86.8      | 75.7        | 501.9 | 57.6 | 82.9   | 90.2      | 76.9 | 38.7 | 64.8  | 74.6      | 59.4 | 408.8 |
|           | CD         | 81.4 | 95.7           | 98.3      | 91.8 | 59.1 | 81.2  | 86.7      | 75.7        | 502.4 | 58.1 | 83.0   | 90.0      | 77.0 | 39.2 | 65.3  | 75.0      | 59.8 | 410.5 |
|           | SR         | 91.0 | 99.1           | 99.7      | 96.6 | 76.1 | 93.0  | 95.8      | 88.3        | 554.7 | 67.8 | 89.1   | 94.2      | 83.7 | 51.0 | 76.8  | 84.8      | 70.8 | 463.7 |
|           | WI         | 93.4 | 99.4           | 99.8      | 97.5 | 80.5 | 95.5  | 97.7      | 91.2        | 566.4 | 70.8 | 91.0   | 95.6      | 85.8 | 55.3 | 80.6  | 88.0      | 74.6 | 481.3 |
| Word      | WS         | 91.0 | 99.1           | 99.6      | 96.6 | 78.2 | 94.7  | 97.4      | 90.1        | 560.0 | 69.2 | 90.3   | 94.9      | 84.8 | 52.3 | 78.5  | 86.6      | 72.5 | 471.8 |
|           | WD         | 92.6 | 99.4           | 99.8      | 97.3 | 79.5 | 95.3  | 97.6      | 90.8        | 564.2 | 70.8 | 90.7   | 95.5      | 85.7 | 53.7 | 79.7  | 87.3      | 73.6 | 477.7 |
|           | IP         | 94.9 | 99.5           | 99.8      | 98.1 | 84.0 | 96.7  | 98.5      | 93.1        | 573.4 | 75.6 | 92.8   | 96.7      | 88.3 | 59.0 | 83.2  | 89.9      | 77.3 | 497.1 |
|           | Formal     | 94.4 | 99.4           | 99.8      | 97.9 | 83.2 | 96.5  | 98.3      | 92.6        | 571.5 | 75.3 | 92.4   | 96.7      | 88.1 | 58.2 | 82.7  | 89.5      | 76.8 | 494.6 |
|           | Casual     | 94.0 | 99.5           | 99.9      | 97.8 | 82.1 | 96.0  | 98.0      | 92.1        | 569.6 | 74.6 | 92.1   | 96.5      | 87.8 | 57.9 | 82.5  | 89.4      | 76.6 | 493.0 |
| Sentence  | Passive    | 92.7 | 99.1           | 99.8      | 97.2 | 79.5 | 94.5  | 97.1      | 90.4        | 562.8 | 73.5 | 91.9   | 96.1      | 87.2 | 56.3 | 81.3  | 88.3      | 75.3 | 487.3 |
|           | Active     | 94.8 | 99.5           | 99.8      | 98.0 | 83.5 | 96.4  | 98.2      | 92.7        | 572.1 | 75.4 | 92.7   | 96.6      | 88.2 | 58.7 | 83.0  | 89.7      | 77.1 | 496.0 |
|           | Back_trans | 93.9 | 99.5           | 99.9      | 97.8 | 80.6 | 95.3  | 97.3      | 91.1        | 566.5 | 72.7 | 91.6   | 96.0      | 86.8 | 55.5 | 80.3  | 87.3      | 74.4 | 483.5 |

Related Work 1: Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham Neubig.

How Can We Know What Language Models Know?,

Transactions of the Association for Computational Linguistics, 8:423–438, 2020.

How Can We Know What Language Models Know?

Zhengbao Jiang<sup>1\*</sup> Frank F. Xu<sup>1\*</sup> Jun Araki<sup>2</sup> Graham Neubig<sup>1</sup> Language Technologies Institute, Carnegie Mellon University<sup>1</sup> Bosch Research North America<sup>2</sup>

{zhengbaj,fangzhex,gneubig}@cs.cmu.edu jun.araki@us.bosch.com

#### Abstract

Recent work has presented intriguing results examining the knowledge contained in language models (LM) by having the LM fill in the blanks of prompts such as "Obama is a \_ by profession". These prompts are usually manually created, and quite possibly suboptimal: another prompt such as "Obama worked as a \_\_\_ may result in more accurately predicting the correct profession. Because of this, given an inappropriate prompt, we might fail to retrieve facts that the LM does know, and thus any given prompt only provides a lower bound estimate of the knowledge contained in an LM. In this paper, we attempt to more accurately estimate the knowledge contained in LMs by automati-. . . . . . · · · · ·

|   | manual                                  | DirectX is devel                       | oped by y <sub>man</sub> |  |  |  |  |  |  |
|---|-----------------------------------------|----------------------------------------|--------------------------|--|--|--|--|--|--|
|   | mined                                   | y <sub>mine</sub> released the DirectX |                          |  |  |  |  |  |  |
|   | paraphrased                             | DirectX is created by ypara            |                          |  |  |  |  |  |  |
|   | Top 5 predictions and log probabilities |                                        |                          |  |  |  |  |  |  |
|   | $y_{\rm man}$                           | $y_{mine}$                             | ypara                    |  |  |  |  |  |  |
| 1 | Intel -1.06                             | Microsoft -1.77                        | Microsoft -2.23          |  |  |  |  |  |  |
| 2 | Microsoft -2.21                         | They -2.43                             | Intel -2.30              |  |  |  |  |  |  |
| 3 | IBM -2.76                               | It -2.80                               | default -2.96            |  |  |  |  |  |  |
| 4 | Google -3.40                            | Sega -3.01                             | Apple -3.44              |  |  |  |  |  |  |
| 5 | Nokia -3.58                             | Sony -3.19                             | Google -3.45             |  |  |  |  |  |  |

Prompts

Figure 1: Top-5 predictions and their log probabilities using different prompts (manual, mined, and paraphrased) to query BERT. Correct answer is underlined.

where the hidden vectors learned through a language modeling objective are then used in downstream language understanding systems (Dai and

### Challenges & Main ideas

- Manually created prompts sub-optimal →
   Automatically generate high-quality and diverse prompts
- 2. GPT  $\rightarrow$  Unstable/unnatural English  $\rightarrow$  BERT
- 3. Prompt Generation → Prompt Selection
- Ensemble methods to combine answers from different prompts

### **Objectives**

- Prompt Generation
  - Mining-based Generation
  - Paraphrasing-based Generation
- Prompt Selection
  - Top-1 Prompt Selection
- Prompt Ensembling
  - Rank-based Ensemble
  - Optimized Ensemble

Credits: Jiang et al., How Can We Know What Language Models Know?, In TACL'20.

| Prompts                                   |       |                   |               |  |  |  |  |
|-------------------------------------------|-------|-------------------|---------------|--|--|--|--|
| manual DirectX is developed by $y_{max}$  |       |                   |               |  |  |  |  |
| mined y <sub>mine</sub> released the Dire |       |                   |               |  |  |  |  |
| paraphrased                               | Dired | ctX is created by | <i>y</i> para |  |  |  |  |

#### Top 5 predictions and log probabilities

|   | $\mathcal{Y}_{man}$ | ${\mathcal{Y}}_{	ext{mine}}$ | $\mathcal{Y}_{	extsf{para}}$ |  |  |
|---|---------------------|------------------------------|------------------------------|--|--|
| 1 | Intel -1.06         | <u>Microsoft</u> -1.77       | Microsoft -2.23              |  |  |
| 2 | Microsoft -2.21     | They -2.43                   | Intel -2.30                  |  |  |
| 3 | IBM -2.76           | It -2.80                     | default -2.96                |  |  |
| 4 | Google -3.40        | Sega -3.01                   | Apple -3.44                  |  |  |
| 5 | Nokia -3.58         | Sony -3.19                   | Google -3.45                 |  |  |

Figure 1: Top-5 predictions and their log probabilities using different prompts (manual, mined, and paraphrased) to query BERT. Correct answer is underlined.

**Prompt Generation** – Mining-based Generation (diverse)

- **Relation Triples**: Subject-Relation-Object < *x*, *r*, *y* >
- Observation: Words in the vicinity of the subject x and object y in a large corpus often describe the relation r
- Method 1: Middle-word Prompts  $\rightarrow r$  is used as a template

Barack Obama was born in Hawaii.

| Prompts | Top1 | Тор3 | Top5 | Opti. | Oracle |
|---------|------|------|------|-------|--------|
| Mid     | 30.7 | 32.7 | 31.2 | 36.9  | 45.1   |
| Mid+Dep | 31.4 | 34.2 | 34.7 | 38.9  | 50.7   |

Method 2: Dependency Parser-based Prompts

Table 7: Ablation study of middle-word and dependency-based prompts on BERT-base.

Syntactic analysis of the sentence  $\rightarrow$  shortest dependency path

The capital of France is Paris.

**Prompt Generation** – Paraphrasing-based Generation

- Back Translation
- First, translate the initial prompt into *B* candidates in another language, each of which is then back-translated into *B* candidates in the original language → B<sup>2</sup> prompts
- Round-trip probability  $P_{\text{forward}}(\bar{t}|\hat{t}) \times P_{\text{backward}}(t|\bar{t})$ 
  - $\hat{t}$ : the initial prompt
  - $\bar{t}$ : the translated prompt in the other language
  - t: the final prompt

Prompt Selection

$$A(t_{r,i}) = \frac{\sum_{\langle x,y \rangle \in \mathcal{R}} o(y = \arg\max_{y'} P_{LM}(y \mid x, t_{r,i}))}{|\mathcal{R}|},$$
  

$$\delta(\cdot): \text{ Kronecker's delta function}$$
  

$$\mathcal{R}: \text{ a set of subject-object pairs with relation}$$

Rank-based Ensemble

linear - - A - -

$$s(y|x,r) = \sum_{i=1}^{K} \frac{1}{K} \log P_{\text{LM}}(y|x,t_{r,i}), P(y|x,t_{r,i}) = \operatorname{softmax}(s(\cdot|x,r))_{y},$$

where  $t_{r,i}$  is the prompt ranked at the *i*-th position, and *K* is number

### Data

- LAMA benchmark (LAnguage Model Analysis)<sup>[1]</sup> T-REx subset (T-REx knowledge source)<sup>[2]</sup>: 41 relations, each with 1,000 subject-object pairs from Wikipedia. (LAMA: probe to test the factual and commonsense knowledge: either subject-relation-object triples or question-answer pairs)
- **LAMA-UHN** T-REx subset <sup>[3]</sup>: filter out those easy-to-guess facts from LAMA ٠
- Google-RE subset (relation-extraction-corpus): 3 relations ("place of birth", "date of birth", and "place of death"), with  $\approx$  60K facts manually extracted from Wikipedia

### Models

BERT-base and BERT-large models<sup>[4]</sup> ٠

Credits:

[1] Petroni et al., Language Models as Knowledge Bases?, In EMNLP'19.

[2] ElSahar et al., T-REx: A Large Scale Alignment of Natural Language with Knowledge Base Triples, In LREC'18.

[3] Porner et al., BERT is Not a Knowledge Base (Yet): Factual Knowledge vs. Name-based Reasoning in Unsupervised QA, In arXiv'20.

[4] Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, In NAACL'19.

[5] Zhang et al., ERNIE: Enhanced Language Representation with Informative Entities, In ACL'19.

| Model     | Man  | Mine | Mine<br>+Man | Mine<br>+Para | Man<br>+Para |
|-----------|------|------|--------------|---------------|--------------|
| BERT      | 31.1 | 38.9 | 39.6         | 36.2          | 37.3         |
| ERNIE [5] | 32.1 | 42.3 | 43.8         | 40.1          | 41.1         |
| KnowBert  | 26.2 | 34.1 | 34.6         | 31.9          | 32.1         |

Table 8: Micro-averaged accuracy (%) of various LMs

### **Evaluation Metrics**

Micro-averaged Accuracy

$$\frac{1}{|\mathcal{R}|} \sum_{\langle x, y \rangle \in \mathcal{R}} \delta(\hat{y} = y).$$

 $\hat{y}$  is the prediction, and y is the ground truth.

Since object distributions of some relations are extremely skewed,

Macro-averaged Accuracy

$$\frac{1}{|\text{uni}_obj(\mathcal{R})|} \sum_{y' \in \text{uni}_obj(\mathcal{R})} \frac{\sum_{\langle x, y \rangle \in \mathcal{R}, y = y'} \delta(\hat{y} = y)}{|\{y| < x, y \rangle \in \mathcal{R}, y = y'\}|},$$

where  $uni_obj(\mathcal{R})$  denotes a set of unique objects from relation r.

**1.** Man: lower bound **2.** Man: complicated syntactically **3.** Top-*K* 

| Prompts   | Top1                 | Тор3     | Top5           | Opti. | Oracle |  |  |  |  |  |
|-----------|----------------------|----------|----------------|-------|--------|--|--|--|--|--|
|           | BERT-base (Man=31.1) |          |                |       |        |  |  |  |  |  |
| Mine      | 31.4                 | 34.2     | 34.7           | 38.9  | 50.7   |  |  |  |  |  |
| Mine+Man  | 31.6                 | 35.9     | 35.1           | 39.6  | 52.6   |  |  |  |  |  |
| Mine+Para | 32.7                 | 34.0     | 34.5           | 36.2  | 48.1   |  |  |  |  |  |
| Man+Para  | 34.1                 | 35.8     | 36.6           | 37.3  | 47.9   |  |  |  |  |  |
|           | BERT-                | large (I | <b>Man=</b> 32 | 2.3)  |        |  |  |  |  |  |
| Mine      | 37.0                 | 37.0     | 36.4           | 43.7  | 54.4   |  |  |  |  |  |
| Mine+Man  | 39.4                 | 40.6     | 38.4           | 43.9  | 56.1   |  |  |  |  |  |
| Mine+Para | 37.8                 | 38.6     | 38.6           | 40.1  | 51.8   |  |  |  |  |  |
| Man+Para  | 35.9                 | 37.3     | 38.0           | 38.8  | 50.0   |  |  |  |  |  |

Table 2: Micro-averaged accuracy of different methods (%). Majority gives us 22.0%. Italic indicates best single-prompt accuracy, and bold indicates the best non-oracle accuracy overall.

Credits: [1] Jiang et al., How Can We Know What Language Models Know?, In TACL'20.

[2] **Man** (baseline)  $\rightarrow$  Petroni *et al.*, Language Models as Knowledge Bases?, In EMNLP'19.



indicates best single-prompt accuracy, and bold indicates the best non-oracle accuracy overall.



### **1.** Man $\rightarrow$ Mine **2.** Opti+Mine **3.** Prompt Modification

| ID   | Relations             | Manual Prompts                        | Mined Prompts             | Acc. Gain |
|------|-----------------------|---------------------------------------|---------------------------|-----------|
| P140 | religion              | x is affiliated with the $y$ religion | x who converted to $y$    | +60.0     |
| P159 | headquarters location | The headquarter of $x$ is in $y$      | x is based in $y$         | +4.9      |
| P20  | place of death        | x died in $y$                         | x died at his home in $y$ | +4.6      |
| P264 | record label          | x is represented by music label $y$   | x recorded for $y$        | +17.2     |
| P279 | subclass of           | x is a subclass of $y$                | x is a type of $y$        | +22.7     |
| P39  | position held         | x has the position of $y$             | x is elected $y$          | +7.9      |

Table 4: Micro-averaged accuracy gain (%) of the mined prompts over the manual prompts.

| ID           | Relations            | Prompts and Weights                                                                                                                                   | Acc. Gain     |
|--------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| P127<br>P140 | owned by<br>religion | x is owned by $y_{.485}$ x was acquired by $y_{.151}$ x division of $y_{.151}$ x who converted to $y_{.151}$ y tirthankara x 100 y dedicated to x 110 | +7.0<br>+12.2 |
| P176         | manufacturer         | y introduced the $x_{.594}$ y announced the $x_{.286}$ x attributed to the $y_{.111}$                                                                 | +7.0          |

Table 5: Weights of top-3 mined prompts, and the micro-averaged accuracy gain (%) over using the top-1 prompt.

Credits: [1] Jiang *et al.*, How Can We Know What Language Models Know?, In TACL'20. [2] **Man** (baseline)  $\rightarrow$  Petroni *et al.*, Language Models as Knowledge Bases?, In EMNLP'19.

| ID   | Modifications                                        | Acc. Gain |
|------|------------------------------------------------------|-----------|
| P413 | x plays in $\rightarrow$ at y position               | +23.2     |
| P495 | x was created $\rightarrow$ made in y                | +10.8     |
| P495 | $x \text{ was} \rightarrow \text{is}$ created in $y$ | +10.0     |
| P361 | x is a part of $y$                                   | +2.7      |
| P413 | x plays in y position                                | +2.2      |

Table 6: Small modifications (update, insert, and delete) in paraphrase lead to large accuracy gain (%).

| ID   | Relations             | Manual Prompts                        | Mined Prompts             | Acc. Gain |
|------|-----------------------|---------------------------------------|---------------------------|-----------|
| P140 | religion              | x is affiliated with the $y$ religion | x who converted to $y$    | +60.0     |
| P159 | headquarters location | The headquarter of $x$ is in $y$      | x is based in $y$         | +4.9      |
| P20  | place of death        | x died in $y$                         | x died at his home in $y$ | +4.6      |
| P264 | record label          | x is represented by music label $y$   | x recorded for $y$        | +17.2     |
| P279 | subclass of           | x is a subclass of $y$                | x is a type of $y$        | +22.7     |
| P39  | position held         | x has the position of $y$             | x is elected $y$          | +7.9      |

Table 4: Micro-averaged accuracy gain (%) of the mined prompts over the manual prompts.

| ID   | Relations    | Prompts and Weights                                                              | Acc. Gain |
|------|--------------|----------------------------------------------------------------------------------|-----------|
| P127 | owned by     | x is owned by $y_{.485}$ x was acquired by $y_{.151}$ x division of $y_{.151}$   | +7.0      |
| P140 | religion     | x who converted to $y_{.615}$ y tirthankara $x_{.190}$ y dedicated to $x_{.110}$ | +12.2     |
| P176 | manufacturer | y introduced the x set y announced the x set x attributed to the y 111           | +7.0      |

Table 5: Weights of top-3 mined prompts, and the micro-averaged accuracy gain (%) over using the top-1 prompt.



$$\operatorname{Div}(t_{r,i}, t_{r,j}) = \frac{\sum_{\langle x, y \rangle \in \mathcal{R}} \delta(\mathcal{C}(x, y, t_{r,i}) \neq \mathcal{C}(x, y, t_{r,j}))}{|\mathcal{R}|}$$

#### Credits:

[1] Jiang et al., How Can We Know What Language Models Know?, In TACL'20.

[2] **Man** (baseline)  $\rightarrow$  Petroni *et al.*, Language Models as Knowledge Bases?, In EMNLP'19.

### Limitations

- Scenarios: factual knowledge extraction in the form of relation triples
- Scenarios: limited by relation types
- Manual Effort: Manually select a prompt from the mined set
- Prediction: single-token object
- Generation: Current mining-based generation is limited to Wikipedia
- *Technical details* are not revealed and open-sourced, unfortunately.

### Dataset for Mining

• Wiki-ZSL (Wiki Zero-Shot Learning) dataset: 113 relations and 94,383 instances

# Part 3 – Prompt Perturbation Selected Works Dataset for Mining

### • Wiki-ZSL (Wiki Zero-Shot Learning) dataset: 113 relations and 94,383 instances

| Files                     | LPAQA / prompt / mine / P131.json1                                                                                                                                               | ۲) (۱/۲)         ContexDesktopieki,siljan           ۲) (۱/۲)         ۲           ۲) (۱/۲)         ۲           ۲         Contexting           ۲         Cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <sup>₽</sup> master → + Q | 💰 jzbjyb update prompts with weights                                                                                                                                             | The file is too large 83.23 MB. Read-only mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Q Go to file t            |                                                                                                                                                                                  | Company of the second se       |
| > 🗖 demo                  | Code Blame 29 lines (29 loc) · 2.04 KB 🔀 Code 55% faster with GitHub Copilot                                                                                                     | cutiletvitte, . j, vertexset : ({ kutilet : (1510055 , type : LEATCAL , )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                           | <pre>1 {"template": "[X] department in [Y] .", "weight": 0.0003056470595765859}</pre>                                                                                            | "variable": false, "unique": false, "namedEntity": true, "tokenpositions": [12,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| > manual paraphrase       | <pre>2 {"template": "[X] department in the [Y] .", "weight": 0.03289679065346718} 3 {"template": "[X] in the u.s. state of [Y] .", "weight": 0.0904144179110880941}</pre>        | 13], "numericalValue": 0.0, "lexicalInput": "Grande Porto"}, {"kbID": "Q27662", 🧾                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ✓ imine                   | <pre>{ "template": "[X] neighborhood of [Y] .", "weight": 0.1750149130821228} 5 { "template": "[X] region of [Y] .", "weight": 0.00019668794993776828}</pre>                     | <pre>"type": "LEXICAL", "variable": false, "unique": false, "namedEntity": true, </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 🗋 P1001.jsonl             | 6 {"template": "[X] area of [Y] .", "weight": 0.0004032670985907316}                                                                                                             | "tokenpositions": [17, 18, 19, 20], "numericalValue": 0.0, "lexicalInput":                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| P101.jsonl                | <pre>8 {"template": "[X] section of [Y] .", "weight": 0.000597324047703296}</pre>                                                                                                | "Norte Region Portuga]"}] "edgeSet": [{"left": [12 13] "right": [17 18 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| P103.jsonl                | 9 {"template": "[X] near [Y] .", "weight": 0.04052167013287544}<br>10 {"template": "[X] district of [Y] .", "weight": 0.20638741552829742}                                       | Note Region, for edges (), edges et al. (et al. (12) (13), (13), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), (14), ( |
| 🗋 P106.jsonl              | <pre>11 {"template": "[X] counties in [Y] .", "weight": 0.0003952435217797756}</pre>                                                                                             | 20], "KDID": "PI31"}], "tokens": ["Maia", "(", ")", "is", "a", "municipality",                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 🗋 P108.jsonl              | 12 {"template": "[X] counties , [Y] .", "weight": 0.0003065320779569447}<br>13 {"template": "[X] local government area of [Y] .", "weight": 0.0004258180852048099}               | "in", "the", "Porto", "Metropolitan", "Area", ",", "Grande", "Porto",                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| P127.jsonl                | 14 {"template": "[X] in the province of [Y] .", "weight": 0.2913641035556793}                                                                                                    | "subregion", ",", "in", "Norte", "Region", ",", "Portugal", ","]}, {"vertexSet":                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| P1303.jsonl               | 15 { template : [X] totated in [1] . , weight : 0.002550610707/55227<br>16 { "template": "[X] in northern [Y] .", "weight": 0.0004054885939694941}                               | [[HebDil, 00120110] However, HEVICALL, Herrichler, felos, Herrichler, felos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| P131.jsonl                | 17 {"template": "[X] campus in [Y] .", "weight": 0.002364457119256258}                                                                                                           | [{"kblb": "Q1260116", "type": "LEXICAL", "Variable": Tatse, "unique": Tatse, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| P136.jsonl                | 10 { template : [X] in northwestern [Y] . , weight : 0.005050522442054267 19 { "template": "[Y] collection at the [X] .", "weight": 0.06817754358053207                          | "namedEntity": true, "tokenpositions": [0, 1], "numericalValue": 0.0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| P1376.jsonl               | <pre>20 {"template": "[X] in western [Y] .", "weight": 0.0003483007603790611} 21 {"template": "[Y] near [X] .", "weight": 0.010535123758018017}</pre>                            | "lexicalInput": "Droitwich Spa"}. {"kbID": "021". "type": "LEXICAL". "variable":                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| P138.jsonl                | <pre>22 {"template": "[X] in southern [Y] .", "weight": 0.0003645003598649055}</pre>                                                                                             | feles Unsignal, feles Unser d'Atitul, Anno Utalgenerational, [21]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| P140.jsonl                | 23 {"template": "[X] city , [Y] .", "weight": 0.00017031394236255437}<br>24 {"template": "[X] municipality in [Y] .", "weight": 0.0002567881892900914}                           | Tatse, "unique": Tatse, "namedentity": true, "tokenpositions": [21], >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| P1412.jsonl               | <pre>25 {"template": "[X] is a city in [Y] .", "weight": 0.00025684782303869724}</pre>                                                                                           | <pre>"numericalValue": 0.0, "lexicalInput": "England"}], "edgeSet": [{"left": [0, 1],</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| P159.jsonl                | 26 {"template": "[X] in central [Y] .", "weight": 0.000209838646696888046}<br>27 {"template": "[X] in northeastern [Y] .", "weight": 0.0003558319294825196}                      | "right": [21]. "kbID": "P131"}]. "tokens": ["Droitwich". "Spa". "High".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| P17.jsonl                 | <pre>28 {"template": "[X] in southwestern [Y] .", "weight": 0.0003820876299869269}<br/>29 {"template": "[X] of the u.s. state of [Y] .", "weight": 0.00027798773953691125}</pre> | Pote #1000     #Potentianu #100000     #Potentianu #1000000     #Potentianu #1000000       D     Potential Subsect configured in a project improver. [Configure 3.75th improver. [C                                                                            |
| P176.isonl                |                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Credits: Sorokin et al., Context-Aware Representations for Knowledge Base Relation Extraction, In EMNLP'17.

Related Work 2: Mohna Chakraborty, Adithya Kulkarni, and Qi Li.

Zero-shot Approach to Overcome Perturbation Sensitivity of Prompts,

Association for Computational Linguistics, 1:5698–5711, 2023.

Zero-shot Approach to Overcome Perturbation Sensitivity of Prompts

Mohna Chakraborty; Adithya Kulkarni\*, and Qi Li Department of Computer Science, Iowa State University {mohnac, aditkulk, qli}@iastate.edu

#### Abstract

Recent studies have demonstrated that naturallanguage prompts can help to leverage the knowledge learned by pre-trained language models for the binary sentence-level sentiment classification task. Specifically, these methods utilize few-shot learning settings to finetune the sentiment classification model using manual or automatically generated prompts. However, the performance of these methods is sensitive to the perturbations of the utilized prompts. Furthermore, these methods depend on a few labeled instances for automatic prompt generation and prompt ranking. This study aims to find high-quality prompts for the given user's intuition of the task (Schick and Schütze, 2021; Gao et al., 2021). Humans can easily write prompts, but the manual prompts are likely to be suboptimal since the language models may understand the instruction differently from humans. Prior studies have also shown that the performance of the language models is sensitive to the choice of prompts. For example, (Gao et al., 2021; Jiang et al., 2020) have shown that the performance is sensitive to the choice of certain words in the prompts and the position of the prompts. Due to the sensitivity and the potential misunderstanding of the instruction, manual prompts tend to suffer from poor performance under zero-shot settings.

### Challenges & Main ideas

- Manually prompts sensitive to perturbation <sup>[1, 2]</sup>
   → Automatically generate high-quality prompts
- 2. Zero-shot setting
- 3. Prompt Generation → Ranking → Selection
  - Positioning, Subordination, Paraphrasing
  - Ranking metric: sensitive to keyword change
- 4. Task: binary sentiment classification

Credits: [1] Gao et al., Making Pre-trained Language Models Better Few-shot Learners, In ACL'21.

# Part 3 – Prompt Perturbation Selected Works *Objectives*

- Prompt Generation
  - Positioning Technique
  - Subordinate Technique
  - Paraphrasing Technique
- Prompt Ranking
  - Zero-shot Setting
- Prompt Selection



- Prompt Selection and Aggregation

**Prompt Augmentation** – "[X]. The sentence was [Y]"

- Positioning Technique
  - > Places the prompt either before or after the given sentence
  - "<u>The sentence was [X]. [Y]</u>"
- Subordinate Technique



- "[X] so the sentence was [Y]" or "The sentence was [Y] because [X]"
- Paraphrasing Technique
  - Synonym Replacement (SR) to the base prompt  $B_p$
  - $\blacktriangleright$  Pre-trained MLM model  $\mathcal{L}$  with a randomly selected sentence [X]
  - Mask the replaceable tokens from the base prompt one at a time

Credits: Chakraborty et al., Zero-shot Approach to Overcome Perturbation Sensitivity of Prompts, In ACL'23.



The sentence was

Subordinate Technique

**Prompt Ranking** – under zero-shot setting

### Zero-shot Setting

- $\blacktriangleright$  High-quality prompt *P* (with number  $S_W$ ) should be more sensitive to changing certain keywords  $\mathcal{V}$
- ▶ Key token  $\mathcal{V}$  flips ⇒ Predicted label  $\mathcal{Y}$  flips
- > Mapping token  $\mathcal{V}$  ["great"  $\rightarrow$  "positive"]
- Use Wordnet <sup>[2]</sup> to obtain synonyms
- Zero-one scoring function

$$\lambda_{s_{\text{in}}} = \begin{cases} 1, & \text{if } O(\mathcal{V}) = O(\mathcal{V}_{\text{same}}) \text{ or } O(\mathcal{V}) \neq O(\mathcal{V}_{\text{flip}}); \\ 0, & \text{otherwise.} \end{cases}$$



Credits:

Chakraborty *et al.*, Zero-shot Approach to Overcome Perturbation Sensitivity of Prompts, In ACL'23.
 Miller *et al.*, WordNet: A Lexical Database for English, In Communications of the ACM'1995.

### **Prompt Selection and Aggregation**

- Prompt Selection
  - Given the sentence and prompt, predict [MASK] and select the highest probability

 $p(y|s_{\text{in}}) = p([\text{MASK}] | s_{\text{in}}, P).$ 

- Prompt Aggregation
  - > Aggregate top-k ranked prompts

$$Score(P_i) = \sum_{j=1}^{|Z|} \lambda_{s_j},$$
$$p(y) = \frac{\sum_{i=1}^k Score(P_i) \times p_i(y)}{\sum_{i=1}^k Score(P_i)}.$$

### **Data** – binary sentence-level sentiment classification datasets

- Stanford Sentiment Treebank v2 (SST-2) <sup>[2]</sup>: predicting Sentiment from longer Movie Reviews
- <u>MR Movie Reviews</u> (MR) <sup>[3]</sup>: overall sentiment polarity (positive or negative) or subjective rating (two and a half stars) and sentences with respect to their subjectivity status (subjective or objective) or polarity.
- Customer Review (CR) [4]: customer review of products

### Models

• BERT-base and BERT-large models <sup>[5]</sup>

| Datasats | SS'  | Т-2  | M    | [ <b>R</b> | CR   |      |  |
|----------|------|------|------|------------|------|------|--|
| Datasets | Pos  | Neg  | Pos  | Neg        | Pos  | Neg  |  |
| Train    | 3610 | 3310 | 4331 | 4331       | 1407 | 368  |  |
| Dev      | 444  | 428  | 0    | 0          | 0    | 0    |  |
| Test     | 909  | 912  | 1000 | 1000       | 1000 | 1000 |  |
| Total    | 4963 | 4650 | 5331 | 5331       | 2407 | 1368 |  |

Credits:

- [1] Chakraborty et al., Zero-shot Approach to Overcome Perturbation Sensitivity of Prompts, In ACL'23.
- [2] Socher et al., Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank, In EMNLP'13.
- [3] Pang et al., Thumbs up? sentiment classification using machine learning techniques, In EMNLP'02.
- [4] Hu et al., Mining and summarizing customer reviews, In KDD'04.
- [5] Devlin et al., BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, In NAACL'19.

72 · 70 ·

Ŕ

Ż

5

ģ

1. \* base prompt 2. aggregation strategy 3. LM-BFF

| -                           |                          |           | BERT base    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |              | BERT large   |             |              |              |              |              |              |
|-----------------------------|--------------------------|-----------|--------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|
|                             | Method                   | Prompt    | SST-2        |              | MR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | CR           |              | SST-2       |              | MR           |              | CR           |              |
|                             |                          | -         | Acc.         | <b>F1</b>    | Acc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>F1</b>    | Acc.         | <b>F1</b>    | Acc.        | <b>F1</b>    | Acc.         | <b>F1</b>    | Acc.         | <b>F1</b>    |
| manual + few-s              | hot LM-BFF               | Automotio | 58.46        | 62.24        | 57.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 62.81        | 71.35        | 69.66        | 52.69       | 59.33        | 57.3         | 63.69        | 70.55        | 69.11        |
| fine-tuni                   | ing UPT                  | Automatic | 57.46        | 61.79        | 62.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 66.78        | 75.09        | 73.53        | 53.82       | 61.08        | 65.2         | 69.69        | 72.62        | 71.4         |
| pretraining bard pro        | LM-BFF                   |           | 62.3         | 65.75        | 58.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 62.16        | 74.9         | 72.81        | 61.15       | 65.41        | 57.88        | 62.64        | 72.59        | 70.85        |
| by adding a off prompts PPT |                          | Manual    | 52.53        | 56.93        | 50.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53.41        | 64.03        | 61.02        | 52.29       | 57.68        | 50.5         | 56.0         | 63.9         | 62.21        |
| by adding son pron          | Base Prompt <sup>†</sup> | Wallual   | 62.3         | 65.75        | 58.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 62.16        | 74.9         | 72.81        | 61.15       | 65.41        | 57.88        | 62.64        | 72.59        | 70.85        |
|                             | Base Prompt*             |           | 63.22        | 63.15        | 59.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60.25        | 69.04        | 64.29        | 54.12       | 58.6         | 54.43        | 57.12        | 56.59        | 62.14        |
| " <sentence></sentence>     | ZS-SC (Top-1)†           |           | 67.48        | 67.52        | 58.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 62.07        | 73.36        | 70.16        | 74.13       | 75.66        | 69.84        | 71.75        | 73.12        | 70.65        |
|                             | ZS-SC (Top-3)†           |           | 67.12        | 68.22        | BERT baseBERT largeMRCRSST-2MRCRF1Acc.F1Acc.F1Acc.F12.24 $57.94$ $62.81$ $71.35$ $69.66$ $52.69$ $59.33$ $57.3$ $63.69$ $70.55$ 1.79 $62.65$ $66.78$ $75.09$ $73.53$ $53.82$ $61.08$ $65.2$ $69.69$ $72.62$ $5.75$ $58.18$ $62.16$ $74.9$ $72.81$ $61.15$ $65.41$ $57.88$ $62.64$ $72.59$ $5.93$ $50.5$ $53.41$ $64.03$ $61.02$ $52.29$ $57.68$ $50.5$ $56.0$ $63.9$ $5.75$ $58.18$ $62.16$ $74.9$ $72.81$ $61.15$ $65.41$ $57.88$ $62.64$ $72.59$ $5.75$ $58.18$ $62.16$ $74.9$ $72.81$ $61.15$ $65.41$ $57.88$ $62.64$ $72.59$ $5.75$ $58.18$ $62.16$ $74.9$ $72.81$ $61.15$ $65.41$ $57.88$ $62.64$ $72.59$ $5.75$ $58.18$ $62.16$ $74.9$ $72.81$ $61.15$ $65.41$ $57.88$ $62.64$ $72.59$ $5.75$ $58.18$ $62.16$ $74.9$ $72.81$ $61.15$ $65.41$ $57.88$ $62.64$ $72.59$ $5.75$ $58.18$ $62.16$ $74.9$ $72.81$ $61.15$ $65.41$ $57.12$ $56.59$ $7.52$ $58.93$ $62.07$ $73.36$ $70.16$ $74.13$ $75.66$ $69.84$ $71.75$ $73.12$ <td>70.05</td> <td>67.82</td> | 70.05        | 67.82        |              |             |              |              |              |              |              |
|                             | ZS-SC (Top-5)†           | Automatic | 67.99        | 68.94        | 61.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 62.92        | 71.51        | 69.32        | 66.55       | 70.09        | 63.47        | 67.76        | 69.41        | 67.32        |
| " <sentence>.</sentence>    | ZS-SC (Top-1)★           | Automatic | 72.18        | 72.36        | 68.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 68.26        | 75.09        | 72.1         | 74.74       | 74.71        | 70.29        | 70.36        | <u>80.47</u> | <u>78.43</u> |
| The sentence                | ZS-SC (Top-3)★           |           | <u>71.92</u> | <u>72.01</u> | <u>67.88</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>67.89</u> | <u>76.82</u> | <u>74.43</u> | 77.11       | 77.58        | 72.96        | 73.54        | 79.17        | 77.84        |
| was [MASK]"                 | ZS-SC (Top-5)★           |           | 71.5         | 71.46        | 66.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 66.88        | 77.26        | 74.52        | <u>76.9</u> | <u>77.54</u> | <u>72.46</u> | <u>73.43</u> | 81.45        | 79.52        |

| Dataset | BERT large                                                 | BERT base                                                     |
|---------|------------------------------------------------------------|---------------------------------------------------------------|
|         | The sentence sounded [MASK] because <sentence>.</sentence> | <pre><sentence>. Every sentence was [MASK] .</sentence></pre> |
|         | Every sentence was [MASK] . <sentence>.</sentence>         | Every sentence was [MASK]. <sentence>.</sentence>             |
| SST-2   | <sentence>. Every sentence was [MASK].</sentence>          | Each sentence was [MASK] . <sentence>.</sentence>             |
|         | The result was [MASK] . <sentence> .</sentence>            | <sentence>. Each sentence was [MASK].</sentence>              |
|         | Each sentence was [MASK] . <sentence> .</sentence>         | <sentence> so every sentence was [MASK].</sentence>           |
|         | The sentence sounded [MASK] because <sentence>.</sentence> | <pre><sentence>. Every sentence was [MASK] .</sentence></pre> |
|         | The sentence seemed [MASK] because <sentence>.</sentence>  | Every sentence was [MASK]. <sentence>.</sentence>             |
| MR      | The result was positive . <sentence>.</sentence>           | Each sentence was [MASK] . <sentence> .</sentence>            |
|         | Every sentence was [MASK] because <sentence>.</sentence>   | <sentence>. Each sentence was [MASK].</sentence>              |
|         | Every sentence was [MASK] . <sentence> .</sentence>        | <sentence> so the sentence sounded [MASK].</sentence>         |
|         | The sentence sounded [MASK] because <sentence>.</sentence> | The sentence sounded [MASK] . <sentence>.</sentence>          |
|         | The sentence sounded [MASK] . <sentence> .</sentence>      | <sentence>. The sentence sounded [MASK].</sentence>           |
| CR      | <sentence>. The sentence sounded [MASK].</sentence>        | Every sentence was [MASK] . <sentence>.</sentence>            |
|         | Every sentence was [MASK] . <sentence>.</sentence>         | <sentence>. Every sentence was [MASK].</sentence>             |
|         | The answer was [MASK] . <sentence> .</sentence>            | This sentence was [MASK] . <sentence>.</sentence>             |

| Dataset   | LM-BFF                                          | PPT                                             | UPT                                                       |
|-----------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|
|           | <sentence>. A [MASK] one.</sentence>            | <sentence>. [MASK].</sentence>                  | <sentence>. It was [MASK].</sentence>                     |
| SST-2     | <sentence>. A [MASK] piece.</sentence>          |                                                 | <sentence>. I thought it was [MASK].</sentence>           |
|           | <sentence>. All in all [MASK].</sentence>       |                                                 | <sentence>. It is [MASK].</sentence>                      |
|           |                                                 |                                                 | <sentence>. The review is [MASK].</sentence>              |
|           |                                                 |                                                 | <sentence>. A [MASK] one.</sentence>                      |
|           | It was [MASK] ! <sentence>.</sentence>          | <sentence>. [MASK].</sentence>                  | <pre><sentence>. A [MASK] piece of work.</sentence></pre> |
| МР        | <sentence>. It's [MASK].</sentence>             |                                                 | <sentence>. It is [MASK].</sentence>                      |
| IVIIN     | <sentence> A [MASK] piece of work.</sentence>   |                                                 | <sentence>. The film is [MASK].</sentence>                |
|           |                                                 |                                                 | <sentence>. A really [MASK] movie.</sentence>             |
|           | <pre><sentence>. It's [MASK] !</sentence></pre> | <sentence>. [MASK].</sentence>                  | <sentence>. It was [MASK].</sentence>                     |
|           | <sentence>. The quality is [MASK].</sentence>   |                                                 | <sentence>. It looks [MASK].</sentence>                   |
| CR        | <sentence>. That is [MASK].</sentence>          |                                                 | <sentence>. It is [MASK].</sentence>                      |
|           |                                                 |                                                 | <sentence>. The quality is [MASK].</sentence>             |
| rcome Per | turbation Sensitivity of Promote In /           | <sentence>. I thought it was [MASK].</sentence> |                                                           |

### **Results** Top-ranked prompts



- Scenarios: limited area of output, e.g., positive or negative
- Subordinate: because-so causality
- Prediction: single-token objects
- Ranking: Need mapping token

### **Summary**

| Year         | Author                                                                | Institution                                                      | Title                                                                    | Scenario                                            | Metrics                                                   | Method                                                           | Model                                           | Result                                                           |
|--------------|-----------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------|
| 2020<br>TACL | Zhengbao<br>Jiang, Frank F.<br>Xu, Jun Araki,<br>and Graham<br>Neubig | CMU, Bosch<br>Research                                           | How Can We Know What<br>Language Models Know?                            | Relation triples                                    | Micro-averaged<br>Accuracy;<br>Macro-averaged<br>Accuracy | Mining<br>Paraphrasing                                           | BERT-base;<br>BERT-large                        | Mine+Man:<br>43.9% (Micro) and<br>30.7% (Macro)<br>on LAMA T-REx |
| 2023<br>ACL  | Mohna<br>Chakraborty,<br>Adithya<br>Kulkarni, and<br>Qi Li            | Iowa State<br>University                                         | Zero-shot Approach to<br>Overcome Perturbation<br>Sensitivity of Prompts | Limited area of<br>output (positive<br>or negative) | Accuracy;<br>Macro F1 Score                               | Subordinate<br>Positioning<br>Paraphrasing                       | BERT-base;<br>BERT-large                        | Accuracy:<br>77.11% (SST-2)<br>72.96% (MR)<br>81.45% (CR)        |
| 2023<br>EACL | Yoichi<br>Ishibashi,<br>Danushka<br>Bollegala, <i>et al</i> .         | Nara<br>Institute of<br>Science and<br>Technology,<br>ULiverpool | Evaluating the Robustness<br>of Discrete Prompts                         | Evaluation of<br>prompt<br>perturbation             | Accuracy;<br>Rate of<br>Degradation (RoD)                 | Token<br>Reordering<br>Deletion;<br>Adversarial<br>Perturbations | AutoPrompt;<br>Manually-written<br>Prompts (MP) | -                                                                |

# Part 4 – Robustness Problem Formulation

### Foundational Robustness:

➤ Evaluation and enhancement of (and sometimes certifiable) model correctness against natural and adversarial data shifts → A foundation of trustworthy AI

### Robustness Category:

Adversarial Robustness (worst-case performance)

x' similar to x, and  $\delta$  is small perturbations.

Ideally,  $f_{\theta}(x' = x + \delta) = f_{\theta}(x)$ .

> Out-of-distribution (OOD) generalization (domain shifts)  $x \sim D$ ,  $x' \sim D'$ , where D' is the shifted version of D.

Ideally,  $f_{\theta}(\mathbf{x}') = f_{\theta}(\mathbf{x})$ .

Out-of-distribution detection (unknowns)

 $x \sim D$ ,  $x' \sim D'$ , where D' is a dissimilar or new domain compared with D. Ideally,  $f_{\theta}(x') =$ "Unknown".

Credits: Pin-Yu Chen and Sijia Liu, Foundational Robustness of Foundation Models Tutorial, In NeurIPS'22.

### Part 4 – Robustness Problem Formulation

### Empirical Adversarial Robustness:

The model  $f(\cdot)$  is robust by optimizing the empirical adversarial risk:

$$\min_{\theta} \mathbb{E}_{(\boldsymbol{x}, \boldsymbol{y})} [\max_{\boldsymbol{\delta} \in \Delta} \mathcal{L}(f_{\theta}(\boldsymbol{x}' = \boldsymbol{x} + \boldsymbol{\delta}), \boldsymbol{y})].$$

Robust optimization (min-max) formulation of adversarial learning

- $\succ \Delta$ : a neighborhood (allowable subset of perturbations) of x
- $\flat \delta \in \Delta = \{\delta : \|\delta\|_{\infty} = \max_{i} |\delta_{i}| \le \epsilon\}$ , and  $x' = x + \delta$  is the adversarial example
- $\succ$   $\mathcal{L}$ : negative cross entropy of  $f_{\theta}(x)$  and y
- > Provide robustness within an  $\epsilon$ -bounded *threat model* for an  $\ell_p$  or  $\ell_\infty$  norm

Credits: Pin-Yu Chen and Sijia Liu, Foundational Robustness of Foundation Models Tutorial, In NeurIPS'22.

### Part 4 – Robustness Problem Formulation

### Certified Adversarial Robustness:

The model  $f(\cdot)$  is certified robust if it satisfies the following condition for  $\forall x$ :

$$f(\mathbf{x}') = f(\mathbf{x}) = \mathbf{y},$$
$$\|\mathbf{x}' - \mathbf{x}\|_0 = \sum_{i=1}^L \mathbb{I}(\mathbf{x}'_i \neq \mathbf{x}_i) \le dL.$$

- >  $x = [x_1, x_2, ..., x_L]$ : input to the LLM  $f(\cdot)$
- $\succ ||x' x||_0$ : Hamming Distance
- $\succ$  I(·): Indicator Function
- $\succ$  d: perturbation scale; dL: neighborhood R (certified range)
- Problem: (1) Same length sequence (2) Never consider semantics change

Credits: Zhang et al., Certified Robustness for Large Language Models with Self-Denoising, In arXiv'23.

### Part 5 – Robustness Evaluation

- Rate of Degradation (RoD) <sup>[1, 2]</sup> / MultiModal Impact score (MMI) <sup>[3]</sup>:
- The decrease in accuracy of the target task due to the perturbations added to the prompt.
- A smaller RoD indicates a more robust model against perturbations

$$\operatorname{RoD} = \frac{\operatorname{avgacc}_{x} - \operatorname{avgacc}_{x^{*}}}{\operatorname{avgacc}_{x}} = 1 - \frac{\operatorname{avgacc}_{x^{*}}}{\operatorname{avgacc}_{x}},$$

 where x\* is the perturbed version of the original prompt x, and avgacc<sub>x</sub> and avgacc<sub>x\*</sub> are the averaged accuracies over M prompts

Credits:

[1] Meyers *et al.*, Signal Processing on PV Time-series Data: Robust Degradation Analysis Without Physical Models, In IEEE J-PV'19.

[2] Ishibashi et al., Evaluating the Robustness of Discrete Prompts, In EACL'23.

# Thank you very much for your attention!

Dependable Computing Laboratory, Department of Electrical and Computer Engineering, Boston University

