

Foundation Models for Sequential Decision Making

Large Pre-trained Causal Models

A Study Case of Safety Critical Systems

Shuyue Jia

M.Phil. Student March 31st 2023

innovation #you

Foundation Models Roles

- Generation Capability
 Directly produce <u>action</u> or <u>state</u>
- Representation Capability
 Pre-trained learners of <u>states</u>, <u>actions</u>, <u>rewards</u>, and <u>transaction dynamics</u>

- Interact: Perform long-term reasoning, control, search, and planning
- Feedback: Solve tasks faster and generalize better

A Short Background of Sequential Decision Making

Task:

• Learning from interactive experience (agent ↔ environment)

Definition:

Markov Decision Process (MDP, Puterman, 1994)

$$\mathcal{M} := \langle S, A, R, 7, \mu, \gamma \rangle$$

- S: state
- A: action (behavior)
- R: reward R: $S \times A \rightarrow \Delta(\mathbb{R})$
- 7: state transition function 7: $S \times A \rightarrow \Delta(S)$
- μ : initial state distribution $\mu \in \Delta(S)$
- γ : discount factor $\gamma \in [0, 1)$

 π : policy π : $S \to \Delta(A)$

 S_0 : initial state $S_0 \sim \mu$

Note: Expert Demonstrations

<u>trajectory (episode)</u>:

state-action-reward tuples

$$\tau_{\mathsf{t}} \coloneqq (\mathsf{s}_{\mathsf{t}}, \mathsf{a}_{\mathsf{t}}, \mathsf{r}_{\mathsf{t}})$$

Goal and Method

Maximize the cumulative rewards of a policy through trial-and-error interactions with the env.

• Reward: total discounted sum of rewards $R(\tau)$

$$R(\tau) \coloneqq \sum_{t=0}^{H} \gamma^{t} r_{t}$$

Maximizing
$$\mathcal{T}(\pi) \coloneqq \mathbb{E}[\sum_{t=0}^{H} \gamma^t r_t | \pi, \mathcal{M}]$$

Imitation Learning and Behavior Cloning (BC)

Train a policy π as close as π^* (expert demonstrations D_{RL})

BC: directly map state to action via learning a policy π

$$L_{\mathrm{BC}}(\pi) \coloneqq \mathbb{E}_{(s,a) \sim D_{\mathrm{RL}}} \left[-\log(\pi(a|s)) \right]$$

Methods Survey $T(\pi) := \mathbb{E}[\sum_{t=0}^{n} \gamma^{t} r_{t} | \pi, \mathcal{M}]$

Policy Gradient-based Methods

• Estimate the gradient of $\mathcal{T}(\pi)$ w.r.t. the policy π

$$\nabla_{\theta} \mathcal{T}(\pi_{\theta}) = \mathbb{E}_{\tau \sim p_{\pi_{\theta}}} \left[\sum_{t=0}^{H} \gamma^{t} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a_{t}}|\mathbf{s_{t}}) \widehat{\mathbf{A}}(\mathbf{s_{t}}, \mathbf{a_{t}}) \right]$$

Value-based Methods

• Learn a optimal value function $Q^*(s_t, a_t)$ by satisfying Bellman Optimality Constraints

$$\begin{split} \pi^*(\cdot \mid s_t) &= \text{argmax}_a Q^*(s_t \text{Action-Value Function} \\ Q^*(s_t, a_t) &= r_t + \gamma \mathbb{E}_{s_{t+1} \sim \tau(s_{t+1} \mid s_t, a_t)} \big[\text{max}_{a_{t+1}} \overline{Q^*(s_{t+1}, a_{t+1})} \big] \end{split}$$

Actor-Critic Methods

• First learn $Q^\pi(s_t,a_t)$ then learn a policy π by setting $\widehat{A}(s_t,a_t)=Q^\pi(s_t,a_t)$

Other Notes

Foundation Models:

Foundation Models for Decision Making Modeling $p(\tau)$ from $\tau \sim D_{RL}$

- Self-supervised Learning on diverse data
- Task-specific Adaptation (Transfer Learning or Prompting)

Offline RL:

• Learn an algorithm from task specific RL dataset $D_{
m RL}$

Model-based RL: need to estimate R and 7 from dataset samples -> Learn a Model

Model-free RL: without R and $7 \rightarrow$ learn policy and R via interactions

Goal: learn multimodal, multitask, and generalist interactive agents

Conditional Generative Models

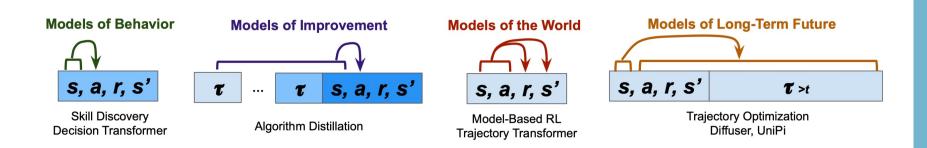


Fig. 3. Illustrations of how conditional generative models can model behaviors, improvements, environments, and long-term futures given a trajectory $\tau \sim \mathcal{D}_{RL}$. Dark blue indicates transitions with higher rewards. Models of behavior (Decision Transformers [Lee et al. 2022]) and self-improvement (Algorithm Distillation [Laskin et al. 2022]) require near-expert data. Models of the world (Trajectory Transformer [Janner et al. 2021]) and long-term future (UniPi [Du et al. 2023b]) generally require data with good coverage.

Conditional Generative Models

- *Definition: conditional* probability modeling of the trajectory distribution $p(\tau)$ from an interactive dataset $\tau{\sim}D_{\mathrm{RL}}$
- Idea: (1) <u>Action</u> (behaviors model)
 (2) Reward & State (environment dynamics, a.k.a. world model)
- Difference: factorization of $p(\tau) \rightarrow$ conditional probabilities multiplication

$$p(x) = \prod_{l=1}^{L} p(x_l | x_{< l}, z)$$

Latent Variable z: represent different trajectory-level properties such as goals,
 skills, and dynamics constrains

Conditional Generative Models

• Difference: factorization of $p(\tau) o$ conditional probabilities multiplication

$$p(x) = \prod_{l=1}^{L} p(x_{l}|x_{< l})$$

Summation

$$L_{\text{LM}}(p) \coloneqq \mathbb{E}_{x \sim D} \left[\sum_{l=1}^{L} -\log p(x_l | x_{< l}) \right]$$

Conditional Generative Models of Behavior (Actions) \leftarrow Pretraining

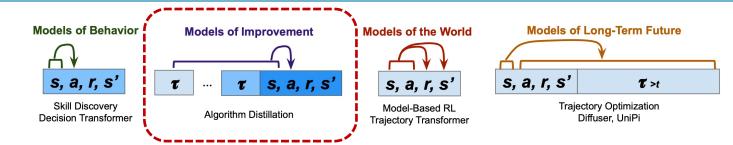


Fig. 3. Illustrations of how conditional generative models can model behaviors, improvements, environments, and long-term futures given a trajectory $\tau \sim \mathcal{D}_{RL}$. Dark blue indicates transitions with higher rewards. Models of behavior (Decision Transformers [Lee et al. 2022]) and self-improvement (Algorithm Distillation [Laskin et al. 2022]) require near-expert data. Models of the world (Trajectory Transformer [Janner et al. 2021]) and long-term future (UniPi [Du et al. 2023b]) generally require data with good coverage.

Image Credit: Reference 1

Conditional Generative Models of Behavior (Actions)

- Policy that can depend on the history of interaction $\pi(a_t|\tau_{< t},s_t)$ Encode history $(\tau_{< t},s_t)$ and decode the next action a_t
- An additional conditioning variable **z** that *captures trajectory-level information*

$$L_{\text{LM}}(\pi) \coloneqq \mathbb{E}_{\tau \sim D_{\text{RL}}} \left[\sum_{t=0}^{H} -\log \pi(a_t | \tau_{< t}, s_t, \mathbf{z}(\tau)) \right]$$

Others

- Generalist Agents trained on massive behavior datasets
- Large-scale Online Learning

Conditional Generative Models of World (Environment Dynamics)

- Idea: Learn Transition Dynamics 7 and Reward Function R from offline dataset $\tau \sim D_{\rm RL}$ then improve policy π
- One-Step Prediction

$$p(\tau) = \prod_{t=0}^{H} p(s_t, r_t, a_t | \tau_{< t}) = \prod_{t=0}^{H} \frac{\text{Dynamics}}{\Gamma(s_t | \tau_{< t})} \frac{\text{Behavior}}{\pi(a_t | \tau_{< t}, s_t)} \frac{\text{Reward}}{\Gamma(s_t | \tau_{< t}, s_t)}$$

Long-Term Future

$$p(\tau) = p(s_0, r_0, a_0, ..., s_H, r_H, a_H)$$

Foundation Model Role 2: Representation Capability

- Plug-and-play style of knowledge compression and transfer
- Representation learning with task specifiers
- Learning representation for Sequential Decision Making

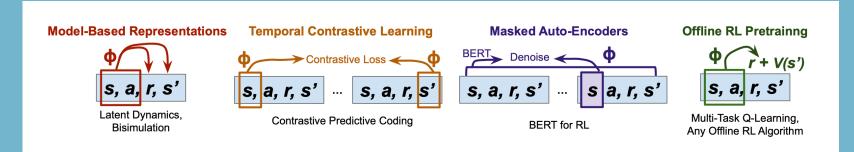


Fig. 4. Illustrations of different representation learning objectives such as model-based representations [Nachum and Yang 2021], temporal contrastive learning [Oord et al. 2018], masked autoencoders [Devlin et al. 2018], and offline RL [Kumar et al. 2022], on a trajectory $\tau \sim \mathcal{D}_{RL}$ specifically devised for sequential decision making.

Foundation Model Role 2: Representation Capability

Model-based Representations

Learning a latent state or action space of an env. by "clustering" states and actions that yield similar transition dynamics

$$\Gamma(\mathbf{s}_{t+1}|\boldsymbol{\tau}_{< t}, \emptyset(\boldsymbol{s}_t), \boldsymbol{a}_t)$$

$$\mathcal{R}(\boldsymbol{r}_t|\boldsymbol{\tau}_{< t}, \emptyset(\boldsymbol{s}_t), \boldsymbol{a}_t)$$

$$\Gamma(\emptyset(\mathbf{s}_{t+1})|\boldsymbol{\tau}_{< t}, \emptyset(\boldsymbol{s}_t), \boldsymbol{a}_t)$$

- Temporal Contrastive Learning
- Masked Autoencoders

Foundation Model Role 3: Agents and Environments

Agent

- Learning from environment feedback produced by humans, tools, or the real world; Building new applications
- Example: Optimize ChatGPT via RLHF
- Example: Generate API Calls (to invoke external tools and receive responses as feedback to support subsequent interaction)

Environment

Example: Prompt ChatGPT

Foundation Models Significance

- Generation Capability
 Directly produce <u>action</u> or <u>state</u>

 Creativity
- Representation Capability
 Pre-trained learners of <u>states</u>, <u>actions</u>, <u>rewards</u>, and <u>transaction dynamics</u>

 Memorizing and Reasoning

Guang-Bin Huang

This is the reason why I called the intelligent revolution, exactly as Watt improved steam engine triggered Industrial Revolution

Like Reply 1v

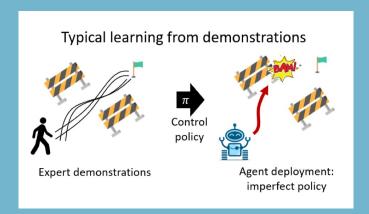
A Study Case: Safety Critical System

Paper: ConBaT: Control Barrier Transformer for Safe Policy Learning

Author: Yue Meng [1], Sai Vemprala [2], Rogerio Bonatti [2], Chuchu Fan [1], Ashish Kapoor [2]

Affiliation: MIT, Microsoft Research

Background and Goal



Background:

Safety Requirement Scenario (e.g., Safe Navigation)

Goal

• Generate safe actions by learning a safe policy $\pi_{\mathrm{safe}} \colon S \to A$

mage Credit: Reference 2

Previous Method and Proposed Method

Previous

- Expert Demonstrations with optimized safety constrains
- Cons: unable to explicitly avoid unsafe actions; without unsafe behaviors

Motivation

- Learn from safe and unsafe demonstrations
- Learn a safety critic on top of the control policy

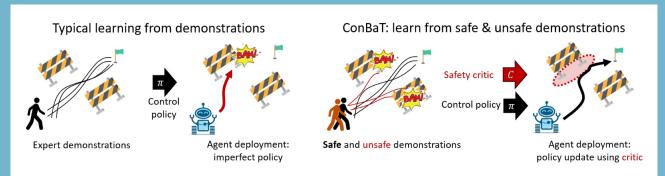


Figure 1: (Left) An agent trained to imitate expert demonstrations may just focus on the end result of the task without explicit notions of safety. (Right) Our proposed method ConBaT learns a safety critic on top of the control policy and uses the critic's control barrier to actively optimize the policy for safe actions.

Base Architecture: Perception-Action Causal Transformer (PACT)

Observation

Partially observable Markov decision process
 State-action tuples τ_t := (s_t, a_t) and t ∈ [0, T]

Method – First Stage:

 State-action pairs from expert demonstrations to autoregressively train both a world model and a policy network, using imitation learning for its training objectives.

© Philips - Confidentia

Base Architectu

Observation

Partially observation tup

Method – First Stag

 State-action pair model and a pol

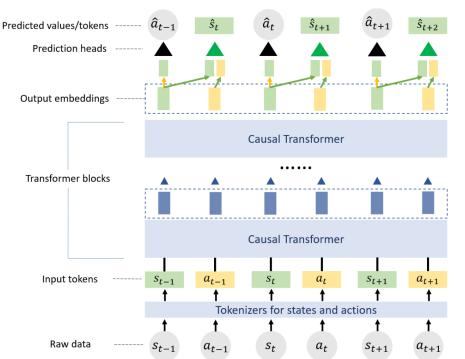


Fig. 2: Perception-Action Causal Transformer (PACT) architecture. \hat{a} and \hat{s} are autoregressively predicted actions and states. The tokenizer does not share information across data, and applies operations individually on raw data inputs. The black and green arrows represent predictions heads for actions and future state tokens respectively.

ormer (PACT)

rain both a world objectives.

Image Credit: Reference

Perception-Action Causal Transformer (PACT)

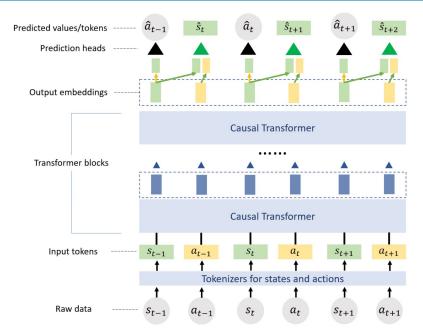


Fig. 2: Perception-Action Causal Transformer (PACT) architecture. \hat{a} and \hat{s} are autoregressively predicted actions and states. The tokenizer does not share information across data, and applies operations individually on raw data inputs. The black and green arrows represent predictions heads for actions and future state tokens respectively.

Tokenizer

raw observation s_t and action a_t data \rightarrow

compact tokens:
$$s'_t, a'_t \in \mathbb{R}^d$$

$$T_s(s_t) \to s'_t$$

$$T_a(a_t) \to a'_t$$

Causal Transformer.

$$X(s'_0, a'_0, ..., s'_T, a'_T) \rightarrow (s_0^+, a_0^+, ..., s_T^+, a_T^+)$$

Policy model

$$\pi(s_t^+) \rightarrow \hat{a}_t$$

World model:

$$\emptyset(s_t^+, a_t^+) \rightarrow s_{t+1}'$$

This Work

Observation

- Two sets of trajectories in this work:
 - (1) $\tau \in \sum_{s} \rightarrow$ obey the desired safety constraints at all time steps
 - (2) $\tau \in \Sigma_{\mathrm{u}} \to \mathrm{lead}$ to an unsafe terminal state

Objective:

- Mimic the action distribution from good demonstrations $\sum_s (S_s)$
- ullet Avoiding sequences of actions that lead to the unsafe terminal states of $\sum_{\mathrm{u}}~(\mathcal{S}_u)$

Unsafe region S_u

embedding is labeled as unsafe.

Safe region S_s

Fig. 2: Definitions of safe and unsafe sets. In safe demonstrations

 τ_s all state embeddings are labeled as safe. In contrast, in unsafe trajectories τ_u , only the first (L-2T) embeddings are assumed to be safe, where T is the Transformer context length, and only the last

Innovation – Control Barrier Critic

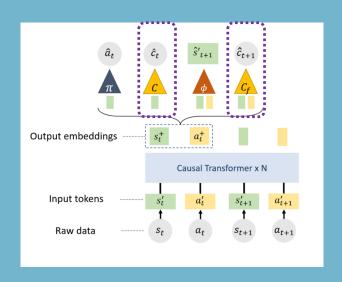
Two trainable critic modules

ightarrow **predict safety scores** for the current and future expected states

- $C: s_t^+ \to \hat{c}_t$
- $C_f: (s_t^+, a_t^+) \rightarrow \hat{c}_{t+1}$

Control Barrier Function (CBF)

- $\forall s \in S_s \rightarrow h(s) \ge 0$
- $\forall s \in S_{\mathrm{u}} = \frac{S}{S_{\mathrm{s}}} \rightarrow h(s) < 0$



$$\dot{h}(s) = \partial h(s)/\partial s \cdot f(s, \pi^*(s)) \ge -\alpha h(s) \text{ with } \alpha > 0$$

Training Critic Loss

Training the CBC involves three loss terms. First, we employ a classification loss \mathcal{L}_c to enable the CBC to learn the safe set boundary:

$$\mathcal{L}_{c} = \mathbb{E}_{s_{t}^{+} \sim \tilde{\mathcal{S}}_{s}^{+}} \left[\sigma_{+} \left(\gamma - \frac{\mathbf{C}}{\mathbf{C}} (s_{t}^{+}) \right) \right] + \mathbb{E}_{s_{t}^{+} \sim \tilde{\mathcal{S}}_{u}^{+}} \left[\sigma_{+} \left(\gamma + \frac{\mathbf{C}}{\mathbf{C}} (s_{t}^{+}) \right) \right]$$
(4)

where $\sigma_+(x) = \max(x, 0)$ and γ is a margin factor that ensures numerical stability in training. The second loss enforces smoothness on the CBC values over time:

$$\mathcal{L}_{s} = \underset{s_{t}^{+} \sim \tilde{\mathcal{S}}^{+}}{\mathbb{E}} \left[\sigma_{+} \left((1 - \alpha) \frac{\mathbf{C}}{\mathbf{C}} (s_{t}^{+}) - \frac{\mathbf{C}}{\mathbf{C}} (s_{t+1}^{+}) \right) \right] \tag{5}$$

where α controls the local decay rate. Note that this loss is asymmetrical as it only penalizes fast score decays but permits instantaneous increases, as a fast-improving safety level does not pose a problem. The final loss ensures consistency between the predictions of both critics C and C_f :

$$\mathcal{L}_f = \mathbb{E}_{s_t^+ \sim \tilde{\mathcal{S}}^+} \left[\left| \frac{C_f}{C_f} (s_t^+, a_t^+) - \frac{C(s_{t+1}^+)}{C(s_{t+1}^+)} \right| \right] \tag{6}$$

Theoretically, one could use a single critic C coupled with a world model ϕ to generate $\phi(s^+, a^+) \to \hat{s}'_{t+1}$ and then estimate future CBC score as $C(\hat{s}'_{t+1})$. We found it empirically helpful to use a separate critic head C_f to predict future CBC scores directly from the output embeddings, as it facilitates the action optimization process described in Section [2.2.2]. The total training loss is $\mathcal{L}_{CB} = \lambda_c \mathcal{L}_c + \lambda_s \mathcal{L}_s + \lambda_f \mathcal{L}_f$, with relative weights λ .

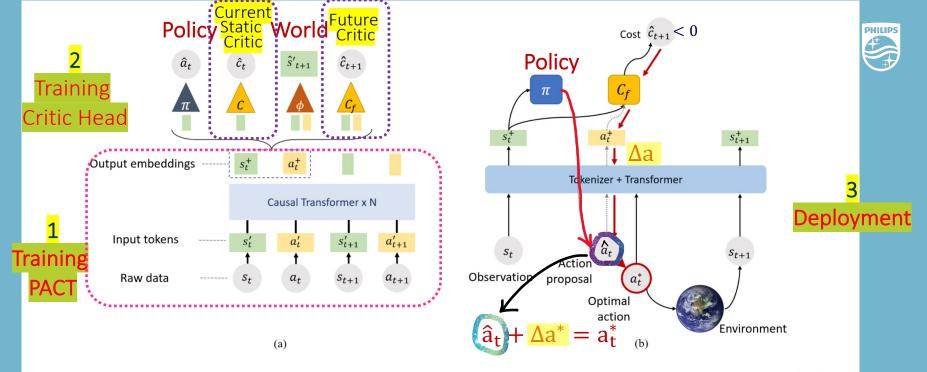
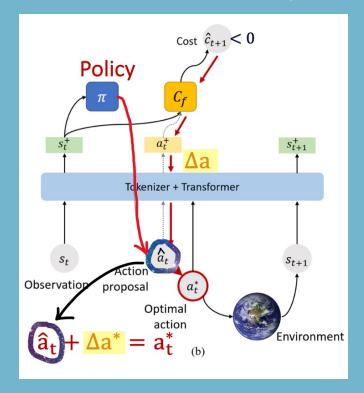


Figure 2: (a) The ConBaT architecture - a causal Transformer operates on state and action tokens (s', a') to produce embeddings (s^+, a^+) . A policy head π computes actions given state embeddings, and a current state critic C computes a safety score. Both state and action embeddings are processed by a world model ϕ to compute the future state token, and by the future critic C_f to produce a future safety score. (b) The deployment process for ConBaT involves a feedback loop. The future critic evaluates action proposals from the policy head to check safety of resultant states. The red arrows show the flow of gradients that allow optimizing for the safe action that results in a desired cost characteristic. The optimal action a^* is used as the final command.

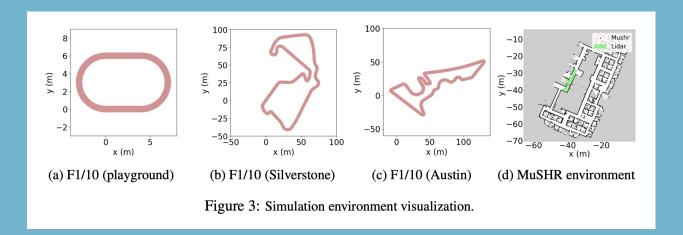
Key Point – Optimize Actions to Improve Safety



If $\hat{C}_{f,t+a} < 0$: $a_t^* = \hat{a}_t + \Delta a^*$ Δa^* : gradient w.r.t. a

 $\Delta a^* = \operatorname{argmin}_{\Delta a} \lambda \left| \left| \operatorname{Cost}(\hat{C}_{t+1}, \operatorname{unsafe label}) \right| \right| + \max(-C_f(s_t^+, a_t^+ + \Delta a), 0)$

Databases (Simulated Environment)



F1/10 race car

- 2D Racing Tracks (Playground, Silverstone, and Austin)
- Observation: distance and angle; Action: steering angle

MuSHR car

• Observation: 2D LiDAR scan; Action: steering angle

Evaluation Metrics

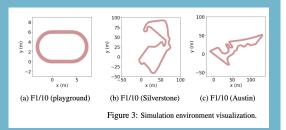
(1) Collision Rate

• The percentage of trajectories in the test set that end in a crash within the cut-off time horizon

(2) Average Trajectory Length (ATL)

• The average length of deployment trajectories, expressed in number of time steps before crashing or time-out if no crash occurs.

Databases (Simulated Environment)



	PACT	PACT-FT	ConBaT
Playground	100	-	0.0
Silverstone	100	96.88	0.0
Austin	100	100	61.7

(a) Collision Rate (%) - lower is better

Playground 175.45 - 1000 Silverstone 61.57 439.28 1000 Austin 57.11 165.12 678.14		PACT	PACT-FT	ConBaT
	Silverstone	61.57	439.28	1000

(b) Avg. Trajectory Length - higher better

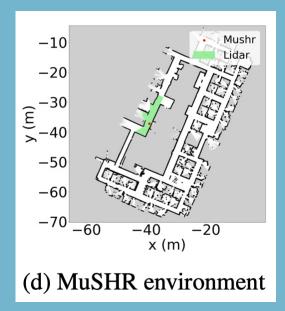
Table 1: Comparison of PACT and ConBaT for the F1/10 task. ConBaT outperforms PACT

F1/10 race car - Playground

Train: 1K demonstrations, each 100 timesteps long

Test: 128 trajectories for a maximum of 1000 timesteps

Databases (Simulated Environment)



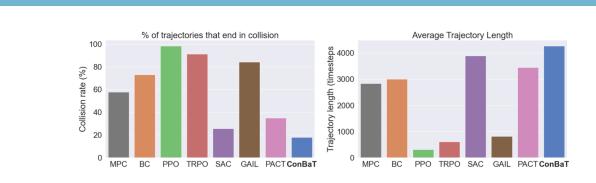


Figure 5: ConBaT outperforms classical MPC and several learning-based methods on safe navigation in the 2D MuSHR car domain.

MuSHR car

Train: 10K trajectories

Test: 128 trajectories for a maximum of 5000 timesteps

mage Credit: Reference 2

Potential Improvement

• (State, Action) ↔ Safe or Unsafe

In the real-world scenario, it should be `Fuzzy` with a probability.

Can we integrate or consider `Fuzzy Control` into this system?

Reward Design

Non-collision rate can be regarded as a reward, right?

Can we design a new framework also with the consideration of maximizing

the reward?

References:

- (1) Yang, S., Nachum, O., Du, Y., Wei, J., Abbeel, P., & Schuurmans, D. (2023).

 Foundation Models for Decision Making: Problems, Methods, and Opportunities.

 arXiv preprint arXiv: 2303.04129.
- (2) Meng, Y., Vemprala, S., Bonatti, R., Fan, C., & Kapoor, A. (2023).
 <u>ConBaT: Control Barrier Transformer for Safe Policy Learning</u>.
 arXiv preprint arXiv:2303.04212.
- (3) Bonatti, R., Vemprala, S., Ma, S., Frujeri, F., Chen, S., & Kapoor, A. (2022).

 PACT: Perception-Action Causal Transformer for Autoregressive Robotics Pre-Training.

 arXiv preprint arXiv:2209.11133.