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A Brief Summary of Three Selected Projects

ü [Definition] Non-local Modeling and Local Modeling
ü [Definition] Global Distortions and Local Distortions
ü [Motivation] Human Visual System (HVS) perceives Image Quality:

Adaptive to local content + Long-range dependency constructed among different regions
ü [Method] Superpixel-based Graph Neural Network to explore Non-local Interactions

IQA Research Novelty
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Image Credit: LIVEC, TID2013, CSIQ, and KADID-10k Databases.
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(ii) Graph Neural Network – Non-Local Modeling Method

(iv) Feature Mean & Std Fusion and Quality Prediction
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(iii) Pre-trained VGGNet-16 – Local Modeling Method
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A Brief Summary of Three Selected Projects

ü Electroencephalogram (EEG) Tasks Classification

Tasks

node

edge
0.7

Weight

mapping topology

interpret model

Control a wheelchair via EEG

Interpret Functional Networks and better understand human brain
Image Credit: in the public domain.

Functional Networks
Graph

International 10-10 EEG System
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A Brief Summary of Three Selected Projects

ü [Motivation] Graph Modeling for EEG Electrodes System
ü [Method] Graph Representation Learning of EEG Signals
ü [Motivation] Spatial-Temporal Analysis of EEG Signals
ü [Method] Deep Feature Mining of EEG Signals

EEG Research Novelty

Graph Representation Learning of EEG Signals

Deep Feature Mining of EEG Signals
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64-channel Signals

20 Subjects × 84 Trials × 640 Samples

(iv) The GCNs-Net

(i) EEG Data Acquisition
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(i) 64-channel Raw EEG Signals Acquisition

64
C

ha
nn

el
s

Slice

(ii) BiLSTM with Attention for Feature Extraction
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Element-wise
Multiplication

L R B F

Input

Softmax Layer

Attention Layer

BiLSTM Model

Feature Extraction

Attention-based Bidirectional Long Short-term Memory (Bi-LSTM)
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A Brief Summary of Three Selected Projects

ü Regression (IQA) and Classification (EEG)

Tasks

ü [Definition] Non-local Modeling and Local Modeling
ü [Definition] Global Distortions and Local Distortions
ü [Motivation] Human Visual System (HVS) perceives Image Quality:

Adaptive to local content + Long-range Dependency constructed among different regions
ü [Method] Superpixel-based Graph Neural Network to explore Non-local Interactions

IQA Research Novelty

ü [Motivation] Graph Modeling for EEG Electrodes System
ü [Method] Graph Representation Learning of EEG Signals
ü [Motivation] Spatial-Temporal Analysis of EEG Signals
ü [Method] Deep Feature Mining of EEG Signals

EEG Research Novelty

Graph Representation Learning of EEG Signals

Deep Feature Mining of EEG Signals
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Selected Research Projects
Shuyue Jia
January 10th, 2023
https://github.com/SuperBruceJia

No-reference Image Quality Assessment via Non-local Modeling

GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding
Time-Resolved EEG Motor Imagery Signals

Deep Feature Mining via Attention-based BiLSTM-GCN for Human Motor 
Imagery Recognition
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No-reference Image Quality Assessment 

via Non-local Modeling

Shuyue Jia 1, Baoliang Chen 1, Dingquan Li 2, and Shiqi Wang 1 *

1 Department of Computer Science, City University of Hong Kong
2 Peng Cheng Laboratory

Project: https://github.com/SuperBruceJia/NLNet-IQA
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Image Quality Assessment (IQA)

Image Credit: TID2013 Database
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Image Quality Assessment (IQA)

Reference Image

Distorted Image

Image Quality

Full Reference IQA

Image Credit: TID2013 Database
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Image Quality Assessment (IQA)

Distorted Image

Image Quality

…
Features of 

Reference Image

Reduced Reference IQA

Image Credit: TID2013 Database
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Image Quality Assessment (IQA)

Distorted Image

Image Quality

No Reference IQA

Image Credit: TID2013 Database
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Image Quality Assessment (IQA)

Reference Image

Distorted Image

Image Quality

…
Features of 

Reference Image

Full Reference IQA

Reduced Reference IQA

No Reference IQA

Image Credit: TID2013 Database
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Recent Progress on No-reference IQA

CNN-based Methods [1]

Ranking-based Methods [2]

Transformer-based Methods [3]

Credit: 
[1] Bosse et al., Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment, In TIP 2018
[2] Liu et al., RankIQA: Learning from Rankings for No-reference Image Quality Assessment, In ICCV 2017
[3] Golestaneh et al., No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency, In WACV 2022 13



Challenges

• Local Modeling (Convolutional Neural Networks):

ü Translation Invariance (Pooling)

ü Translation Equivalence (Convolution)

ü Sharable Parameters (Weight Sharing)

• Limitations:

ü Small-sized Receptive Field → Extracted features are too local

ü Parameters Fixed across the whole image → Image content is equally treated

ü Lack of Geometric and Relational Modeling → Missing complex relations and dependencies

Convolutional Neural NetworksInput Image
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Motivation

ü HVS is adaptive to the local content

→ Local feature extraction via a pre-trained CNN

ü HVS perceives image quality with long-range dependency constructed among different regions

→ Non-local feature extraction for long-range dependency and relational modeling

Non-local DependencyLocal Feature Extraction

Image Credit: LIVEC and TID2013 Databases
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Definition

Image Credit: TID2013 and LIVEC Databases
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Definition

Image Credit: TID2013 and LIVEC Databases

Convolution:
Pixel-to-Pixel

Modeling
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Definition

ü Local Modeling: encodes spatially proximate Local Neighborhoods.

ü Non-local Modeling: establishes Spatial Integration of Information by Long- and Short-Range 

Communications with different Spatial Weighting Functions.

Image Credit: TID2013 and LIVEC Databases
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Non-local Behavior

ü Non-local Modeling: establishes the Spatial Integration of Information 

by Long- and Short-Range Communications with different Spatial Weighting Functions.
Image Credit: TID2013 and LIVE Databases

Object-to-Pixel Modeling
Region Feature Extraction

Non-local
Dependency & Relational

Modeling

Semantics and Content
Understanding
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Definition

Image Credit: CSIQ and KADID-10k Databases
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Definition

Image Credit: CSIQ and KADID-10k Databases

Global Distortion

Non-Local Recurrence
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Definition

Image Credit: CSIQ and KADID-10k Databases

Global Distortion Local Distortion

Non-Local Recurrence

Local Distortion
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Definition

ü Global Distortion: globally and uniformly distributed distortions with non-local recurrences over the image.

ü Local Distortion: local nonuniform-distributed distortions in a local region.

Image Credit: CSIQ and KADID-10k Databases

Global Distortion Local Distortion

Non-Local Recurrence

Local Distortion
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Superpixel Segmentation

Superpixel vs. Square Patch

ü Adherence to boundaries and 

visually meaningful

ü Accurate feature extraction

Image Credit: TID2013 Database
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Superpixel Segmentation

Image Credit: TID2013 Database
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Superpixel Segmentation

Image Credit: TID2013 Database
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Gaussian Noise

Reference
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Superpixel Segmentation

Image Credit: TID2013 Database
21



Superpixel Segmentation

Image Credit: TID2013 Database

Texture

Reference

Gaussian Blur

Gaussian Noise
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Image Credit: TID2013 Database
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The Evaluated Image

(i) Image Preprocessing

NLNet
Architecture

Image Credit: TID2013 Database
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(ii) Graph Neural Network – Non-Local Modeling Method
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(ii) Graph Neural Network – Non-Local Modeling Method
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(ii) Graph Neural Network – Non-Local Modeling Method

(iv) Feature Mean & Std Fusion and Quality Prediction
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Experimental Setup

• Databases:
ü LIVE, CSIQ, TID2013, and KADID-10k

• Evaluation Metrics:
ü SRCC (Spearman Rank-order Correlation Coefficient)

ü PLCC (Pearson Linear Correlation Coefficient)

• Experimental Settings:
ü Intra-Database Experiments: 

→ 60% training, 20% validation, and 
20% testing, with `random` seeds from 1 to 10

→ The median SRCC and PLCC are reported.

ü Cross-Database Evaluations: 

→ One database as the training set, and 
the other databases as the testing set

→ Report the last epoch’s performance

Screen
Content

Natural
Images
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Intra-Database Experiments
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Intra-Database Experiments

SOTA
Transformer
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Intra-Database Experiments
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Intra-Database Experiments

Fewer Training Data
↓ 20% Total Data

↑ Highly Competitive Performance
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Cross-Database Settings and Evaluations

25



Cross-Database Settings and Evaluations

Similar 
Distortions
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Cross-Database Settings and Evaluations

Similar 
Distortions

TID:
More Distortion Types & Levels
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Single Distortion Type Evaluation

Image Credit: LIVE Database
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Single Distortion Type Evaluation

Image Credit: LIVE Database

Non-local
Recurrence
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Single Distortion Type Evaluation

Image Credit: LIVE Database
26



Single Distortion Type Evaluation

Image Credit: LIVE Database

Local
Distortion
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Single Distortion Type Evaluation

Image Credit: LIVE Database
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Single Distortion Type Evaluation

Image Credit: LIVE Database

Global 
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Single Distortion Type Evaluation

Image Credit: LIVE Database
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Single Distortion Type Evaluation

Image Credit: LIVE Database
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Single Distortion Type Evaluation

Image Credit: CSIQ Database
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Single Distortion Type Evaluation

Image Credit: CSIQ Database
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Single Distortion Type Evaluation

Image Credit: CSIQ Database
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Single Distortion Type Evaluation

Image Credit: CSIQ Database

Noise-Related
Distortions
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Single Distortion Type Evaluation

Image Credit: TID2013 Database

Noise and Compression-Related Distortions
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Single Distortion Type Evaluation

Image Credit: TID2013 Database
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Single Distortion Type Evaluation

Image Credit: KADID-10k Database
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Single Distortion Type Evaluation

Image Credit: KADID-10k Database
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Takeaways and Future Work
ü Non-local & Local Modeling

(1) The Non-local Modeling is complementary to traditional local methods. 

(2) CNN’s Local Modeling features are effective and robust.

ü Global & Local Distortions

(1) Handle a wide variety of Global Distortions: globally and uniformly distributed with non-local recurrences. 

(2) Maintain sensitivity to Local Distortions: local nonuniform-distributed distortions in a local region.

(3) Better assess Noisy and Compressed Images quality.

ü Generalization Capability Cross-Dataset Setting → High Generalization Capability

ü Future Work Non-local Statistics [1, 2]

Credit: 
[1] Zontak et al., Internal Statistics of a Single Natural Image, In CVPR 2011
[2] Buades et al., A Non-local Algorithm for Image Denoising, In CVPR 2005 30



GCNs-Net: A Graph Convolutional Neural Network Approach 

for Decoding Time-Resolved EEG Motor Imagery Signals

Yimin Hou 1, Shuyue Jia 1, 2, Xiangmin Lun 1, Ziqian Hao 3, Yan Shi 1, 

Yang Li 4, Rui Zeng 5, and Jinglei Lv 5 *

1 School of Automation Engineering, Northeast Electric Power University
2 Department of Computer Science, City University of Hong Kong

3 Jinan Vocational College
4 School of Electrical Engineering, Northeast Electric Power University

5 School of Biomedical Engineering and Brain and Mind Center, The University of Sydney

EEG Deep Learning Library: https://github.com/SuperBruceJia/EEG-DL
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Background
u BCI: establish connections between the brain and machines

(1) Acquire and analyze brain signals while conducting actual or imagery tasks

(2) Control machines

u Significance: help the disabled and understand the human brain

u Types of BCI:

u Electroencephalography (EEG)

u Magnetoencephalography (MEG)

u Functional Magnetic Resonance Imaging (fMRI)

u Invasive BCI Technologies (e.g., Neuralink)

u Reasons for using EEG for this project:

u Non-Invasiveness

u High Temporal Resolution

u Portability

u Inexpensive Equipment

u Specific Task: EEG Motor Imagery (e.g., control a wheelchair via imagery-based EEG signals)

u Our Research: develop EEG-based BCI technologies to improve current stroke rehabilitation strategies

A potential market

Image Credit: in the public domain. 32



Key Points in dealing with EEG time series

u Individual Variability → Lower Classification Accuracy

ü Low SNR

ü Different brain electrical conductivity ← different anatomical structure of brain

ü Electrodes’ positional error 

u Slow Responding → Hard to develop Real-life Applications 

ü [most literature] Trial-level prediction (e.g., 4 s)

ü Window/Slide-level prediction (e.g., 0.4 s)

ü Time-resolved prediction (e.g., 6.25 ms) (Our Work)

u Lower Group-level Accuracy → Hard to develop Applications for a Group of People

ü [most literature] Subject-level prediction (Our Work)

ü Group-level prediction (Our Work)

33
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Motivation

Convolutional Neural Networks:

• Module: Convolution → Pooling → Fully-connected

• Modeling: Euclidean-Structured Data (e.g., Image, Speech, Natural Language)

• Neuroscience research has increasingly emphasized Brain Network Dynamics

• Model Functional Topological Connectivity of EEG Electrodes → Graph (Non-Euclidean Structure)

Image Credit: The PhysioNet Dataset and the Functional Network Image is in the public domain.
34
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• Model Functional Topological Connectivity of EEG Electrodes → Graph (Non-Euclidean Structure)
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Motivation

Convolutional Neural Networks:

• Module: Convolution → Pooling → Fully-connected

• Modeling: Euclidean-Structured Data (e.g., Image, Speech, Natural Language)

• Neuroscience research has increasingly emphasized Brain Network Dynamics

• Model Functional Topological Connectivity of EEG Electrodes → Graph (Non-Euclidean Structure)

Our Question

How to model the EEG System 
as a Graph?

How can we process EEG Signals
via Graph Representation Learning?
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interpret

Image Credit: The PhysioNet Dataset and the Functional Network Image is in the public domain.
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Can we directly apply convolutions on graphs?

u Traditional CNN cannot directly process graph signals

u Graph is irregular (i.e., unordered and vary in size)

u Convolution cannot keep Translation Invariance on non-Euclidean signals

u Graph Convolutional Neural Networks (GCN)

u Directly process non-Euclidean graph-structured signals

u Consider relational properties (e.g., correlations) between nodes

→ Model Functional Topological Relationships among EEG electrodes

→ Analyze and interpret Brain Network Dynamics
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Benchmark Dataset
u The PhysioNet Dataset (EEG Motor Movement/Imagery Dataset)

u International 10-10 EEG System → 64 electrodes

(excluding electrodes Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9, and P10)

u 109 subjects (the largest number of participants in the field of EEG Motor Imagery)

u Task: 4-class EEG Motor Imagery Classification 

ü Imagining (Task 1) left fist, (Task 2) right fist, (Task 3) both fists, (Task 4) both feet

u Each subject → 3 runs, 7 trials, 4 classes → 84 trials in total

u Each trial → 4 seconds experimental duration, 160 Hz Sampling Rate → 640 Time Points

u We apply the Time-resolved Sampling Method
ü Total samples per subject: 3 runs × 7 trials × 4 classes × 4 seconds × 160 Hz = 53,760 samples

ü Experimental Setting: 90% as the training set and the left 10% as the test set

Image Credit: The PhysioNet Dataset and the middle image is in the public domain.
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Preliminary: Graph Representation

Definition: An Undirected and Weighted Graph with N nodes: 𝐆 = 𝐕, 𝐄, 𝐀
– V: nodes (vertices), |V| = N
– E: edges (links) that connect nodes
– A: weights (correlations) between nodes 

Nodes Correlations: Pearson Matrix P ∈ R"×" (denotes as PCC matrix)
– Measure the linear correlations between node x and node y
– 𝜇 is the mean, 𝜎 is the standard deviation, and 𝑃$,& is the Pearson Correlation Coefficient between node x and node y

𝑃$,& =
E((𝐱 − 𝜇$)(𝐲 − 𝜇&))

𝜎$𝜎&
– Absolute Pearson Matrix: |𝐏| ∈ R"×" and |𝑃𝑖𝑗| ∈ [0, 1] → Note: In this work, we only consider scale.

Graph Weights: Adjacency Matrix 𝐀 = 𝐏 − 𝐈 ∈ R"×", where I is an Identity Matrix
Graph Degrees: Degree Matrix D ∈ R"×"

𝐷'' =<
()*

"

𝐴'(

Graph Representation: Combinatorial Laplacian L ∈ R"×"
𝐋 = 𝐃 − 𝐀

Normalized:
𝐋 = 𝐈 − 𝐃+

*
,𝐀𝐃

*
,

Edge
0.7

Weight
Node
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Preliminary: 

Spectral Theorem for Graph Laplacian L
𝐋 = 𝐔𝚲𝐔!

𝐋𝐔 = 𝚲𝐔

– U: Fourier basis → real and orthonormal eigenvectors of L

– 𝚲: Fourier modes → the diagonal is the ordered and real nonnegative eigenvalues of L

Graph Fourier Transforms of Signal f

F 𝑓 𝛌 = %𝑓 𝛌 =&
89:

;

𝑓 𝑖 ×𝑈(𝑖)

!𝑓 𝛌 is the projection value of the Fourier basis 𝐔

can be seen as the e"#$%
in Fourier Transforms

%𝑓 𝛌 = 𝐔<𝑓⟺ 𝑓 = 𝐔 %𝑓 𝛌
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Preliminary: Graph Convolution via Graph Fourier Transform

(𝑓 ∗ ℎ)𝐆= F*+( @𝑓(𝑤)×Cℎ(𝑤))

(𝑓 ∗ ℎ)𝐆= F*+ 𝐔,𝑓 ⊙ (𝐔,ℎ)

@𝑓 𝛌 = 𝐔,𝑓
Hadamard Product

(Element-wise Multiplication)

(𝑓 ∗ ℎ)𝐆= 𝐔 𝐔,𝑓 ⊙ (𝐔,ℎ)

𝑓 = 𝐔 @𝑓 𝛌

(𝑓 ∗ ℎ)𝐆= 𝐔 diag[Cℎ 𝜆+ , Cℎ 𝜆- , … , Cℎ 𝜆. ]𝐔,𝑓

[n × n]

F 𝑓 ∗ ℎ 𝐆 = @𝑓 𝑤 ×Cℎ(𝑤)

Note: Fourier Transforms of Convolution in the spatial domain
⇔

Point-wise Multiplication of two Fourier transformed signals

Source: https://en.wikipedia.org/wiki/Convolution_theorem

[n × n] [n × n]
[n × d]

Notation:

Signal f

Signal h

F: Fourier Transforms

F+*: Inverse Fourier Transforms
B𝑓 𝑤 : F(f)

Eℎ(𝑤): F(h)

Convolution
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(𝑓 ∗ ℎ)𝐆= 𝐔 diag[Cℎ 𝜆+ , Cℎ 𝜆- , … , Cℎ 𝜆. ]𝐔,𝑓

𝓨 = 𝜎(𝐔𝐠𝛉𝐔,𝛘)

Activation Function

𝓨 = 𝜎(𝐔𝐠𝛉(𝚲)𝐔,𝛘)
𝚲 = diag(𝜆+, 𝜆-, … , 𝜆.)

𝐠𝛉 𝚲 = '
(01

2

𝜃(𝚲(Approximate

Kth Polynomial Function

𝓨 = 𝜎 𝐔'
(01

2

𝜃(𝚲( 𝐔,𝛘 = 𝜎 '
(01

2

𝜃( (𝐔𝚲(𝐔,)𝛘 = 𝜎 '
(01

2

𝜃( (𝐔𝚲𝐔,)(𝛘 = 𝜎 '
(01

2

𝜃( 𝐋(𝛘

𝓨 = 𝜎 '
(01

2

𝜃( 𝐋(𝛘

Credit: Defferrard et al., Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, In NeurIPS 2016.

Graph Convolution
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Graph Convolution

𝓨 = 𝜎 &
U9V

W

𝜃U 𝐋U𝛘

Pros:

1. No need for Spectral Decomposition of 𝐋

2. Less number of parameters (decrease model complexity) → K≪ N

Cons: Need to compute 𝐋(

𝐱𝐧𝐞𝐰 ← 𝐋𝐱𝐢 =(
#

𝐴*#(𝐱𝐢 − 𝐱𝐣)

GCN Key Idea: Use "edge information" to aggregate "node information" to generate a new "node representation"

Node Aggregation
K is Filter Size

Laplace Operator
Local connectivity

Localize in Space

𝐱𝐣

𝐱𝐢

𝐱𝐣
𝐱𝐣

𝐱𝐣

𝐱𝐢
𝐱𝐢

𝐱𝐣 𝐱𝐣
𝐱𝐣

𝐱𝐣

𝐱𝐣 𝐱𝐣
𝐱𝐣

𝐱𝐢
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Graph Convolution
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U9V

W

𝜃U 𝐋U𝛘

Pros:

1. No need for Spectral Decomposition of 𝐋

2. Less number of parameters (decrease model complexity) → K≪ N

Cons: Need to compute 𝐋(

Convolution:
Weighted Sum
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#
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No need for Fourier Transform
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1. No need for Spectral Decomposition of 𝐋

2. Less number of parameters (decrease model complexity) → K≪ N

Cons: Need to compute 𝐋(

Weight Sharing

𝐱𝐧𝐞𝐰 ← 𝐋𝐱𝐢 =(
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Graph Convolution

𝓨 = 𝜎 &
U9V

W

𝜃U 𝐋U𝛘

Pros:

1. No need for Spectral Decomposition of 𝐋

2. Less number of parameters (decrease model complexity) → K≪ N

Cons: Need to compute 𝐋(

𝐱𝐧𝐞𝐰 ← 𝐋𝐱𝐢 =(
#

𝐴*#(𝐱𝐢 − 𝐱𝐣)

GCN Key Idea: Use "edge information" to aggregate "node information" to generate a new "node representation"

Node Aggregation
K is Filter Size

Laplace Operator
Local connectivity

Beauty is in Simplicity

Localize in Space

𝐱𝐣

𝐱𝐢

𝐱𝐣
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Pooling on Graphs (Graph Coarsening)

• Traditional CNN doesn’t need to consider neighbors after convolutions

– [Euclidean Structure] The output Feature Maps are “regular”

– The neighbor is “meaningful”

• GCNs need to consider neighbors after convolutions

– [Non-Euclidean Structure] The output graphs’ nodes are not arranged in any meaningful way

– Use Graclus Multilevel Clustering Algorithm to find “meaningful” neighbors

– Minimize the Local Normalized Cut (a cluster grouping method)

−𝑊'((
1
𝑑'
+
1
𝑑(
)

– i and j denote node i and node j

– 𝑊'( is the learned weight between node i and node j

Image Credit: in the public domain.
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64-channel Signals

20 Subjects × 84 Trials × 640 Samples

(iv) The GCNs-Net

(i) EEG Data Acquisition

PCC Matrix Absolute 
PCC Matrix Adjacency Matrix Graph 

Laplacian

(ii) Correlations between EEG Electrodes

(iii) Graph Representation

N×N

N

𝐍
𝟐𝒍"𝟏
× 𝐍
𝟐𝒍"𝟏
×Fl

GCNPooling

𝐍
𝟐𝒍
×𝐍
𝟐𝒍
×Fl

Flatten

×6
𝐍
𝟔𝟒
× 𝐍

𝟔𝟒
×F6

4

Softmax
L

R

B

F

Graph
Weights & Degrees

Real-time 64-channel Raw EEG Signals

International 10-10 EEG System
43



Correlation among EEG electrodes
Two Subjects: Subject 10 and 5

Problem: Individual Variability
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Correlation among EEG electrodes
20 Subjects and 100 Subjects

Increasing the number of subjects alleviates individual variability 
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Model Design for 64-electrode EEG System
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Model Optimization
• Ablation Study: Optimal Model Structure (64-electrode EEG System) 

– C6-P6-K2 with [16, 32, 64, 128, 256, 512] filters 

• Gradient Iterative Solver: Adam Optimizer with Stochastic Gradient Descent (SGD) algorithm

– Learning Rate: 0.01

– Batch Size: 1,024

• Activation Function: Softplus (Smooth Rectified Linear Unit)

F 𝐱 = log(1 + e𝐱)

• Model Output: Softmax: 𝐲 are labels, O𝐲 are the final output tasks

P𝑦' = argmax
e&"

∑.)*/ e&"

• Loss Function: Cross-entropy Loss with L2 regularization

Loss = −<
.)*

/

𝑦' log P𝑦' + λ <
0)*

1

𝑤0, + 𝑏0,

λ = 1×10-6 is the coefficient of the L2 regularization.
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Ablation Study

K2 → K5
Similar Performance

K1
Poor Performance
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Experimental Results
Groupwise Prediction and Subject-specific Adaptation

Note: p-value < 0.05 → Statistically Significant Difference
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Takeaways and Future Work

ü Graph Representation

Graph Representation Learning to deeply extract Network Patterns of Brain Dynamics for EEG classification.

ü Model Converge

Converge for both Personalized and Groupwise Predictions, indicating that the GCNs-Net is able to build a 

generalized representation of EEG time-series against both Personalized and Groupwise Variations.

ü Future Work

Model EEG signals as Dynamic Graphs and process them via Dynamic Graph Representation Learning.
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Deep Feature Mining via Attention-based BiLSTM-GCN 

for Human Motor Imagery Recognition

Yimin Hou 1, Shuyue Jia 1, 2 *, Xiangmin Lun 1, Shu Zhang 3, Tao Chen 1, Fang Wang 1, and Jinglei Lv 4

1 School of Automation Engineering, Northeast Electric Power University
2 Department of Computer Science, City University of Hong Kong

3 School of Computer Science, Northwestern Polytechnical University
4 School of Biomedical Engineering and Brain and Mind Center, The University of Sydney

EEG Deep Learning Library: https://github.com/SuperBruceJia/EEG-DL
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One Problem of the GCNs-Net

ü GCNs-Net is based on Time-resolved Signal → doesn’t consider Temporal Information

Motivation:

ü [Spatial-Temporal Analysis] Consider Temporal and Spatial Information from EEG signals

ü [Responsive] Maintain High Responding Time

Time-resolved 
Signal

Temporal informationSpatial information

0.4 s

Image Credit: The PhysioNet Dataset.52



64-channel Raw EEG Signals Acquisition

ü 4-s Signals (experimental duration): 0.4-s segments over time

ü Each Segment: 64 channels × 64 time steps

ü Pre-processed Data: Temporal Information + Spatial Information

0.4-second Segments
Data over experimental 

Duration (4 seconds)

64
C

ha
nn

el
s

Slice
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64-channel Raw EEG Signals Acquisition

ü 4-s Signals (experimental duration): 0.4-s segments over time

ü Each Segment: 64 channels × 64 time steps

ü Pre-processed Data: Temporal Information + Spatial Information

0.4-second Segments
Data over experimental 

Duration (4 seconds)

64
C

ha
nn

el
s

Slice

Temporal Information 

Spatial Information
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Temporal Information Extraction

Recurrent Neural Network (RNN) Long Short-Term Memory (LSTM)

ü Designed for order-mattered sequential data, e.g., time series

ü The learned features at time step t are affected by 𝐱[ and 𝐱[\] → continuly learn from time series

ü LSTM: better capture long-range sequence dependencies

ü Gated Recurrent Units (GRU): lightweight architecture with comparable performance

unrolling the network through time

Image Credit: LeCun et al., Deep Learning, In Nature.
54



Long Short-term Memory (LSTM)
ü RNN: Vanishing Gradient problem

ü LSTM: Capture Long-range Dependencies

by the long-term state path 𝐜3*+ → 𝐜3 (improve the gradient flow)

ü Gate: control information flow

ü Input Gate: store 𝐱3 and control 𝐜3’s input 

ü Forget Gate: control 𝐜3*+
ü Output Gate: control 𝐜3’s output

→ short-term state 𝐡3 (Cell’s Output)

ü More parameters to store information

ü Bidirectional:

(1) 𝐱+ → 𝐱3
(2) 𝐱3 → 𝐱+

ü GRU: Update Gate, Reset Gate; hidden state

64-channel Raw EEG Signals
at Time Step x(t)
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Attention Mechanism

ü Signals or Outputs 

Equally treated/contributed 

vs.

Differently treated/contributed with preference/importance

𝐔3 = tanh(𝐖𝐰𝐲𝐭 + 𝐛𝐰)

𝛂𝐭 =
exp(𝐔3,𝐖𝐔)
∑3 exp(𝐔3,𝐖𝐔)

b𝐔3 ='
3

𝛂3𝐲3

Attentional 
Weights

FC Layer

Weighted 
Sum

Image Credit: Prof. Bolei Zhou.
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Element-wise
Multiplication

L R B F

Input

Softmax Layer

Attention Layer

BiLSTM Model

Feature Extraction

Attention-based Bidirectional Long Short-term Memory (Bi-LSTM)
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Model Design Ablation Study
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Topological Structure of Features

ü Deep Feature Mining → Intra-feature Relationship → Intra-feature Modeling

(i) 64-channel Raw EEG Signals Acquisition

64
C

ha
nn

el
s

Slice

(ii) BiLSTM with Attention for Feature Extraction

LSTM Cell

LSTM Cell
Attention

L
R

B
F

L

R

B

F

Labels

4 Tasks

BackpropInput

Deep features
of a EEG segment
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(i) 64-channel Raw EEG Signals Acquisition

64
C

ha
nn

el
s

Slice

(ii) BiLSTM with Attention for Feature Extraction

LSTM Cell

LSTM Cell
Attention

L
R

B
F

L

R

B

F

Labels

4 Tasks

Backprop
Input

(iii) Graph Convolutional Neural Network

GCN
Max

PoolingFlatten

Softmax

L

R

B

F

Features Pearson Matrix

Laplacian Matrix

Adjacency Matrix

N×N

Graph

Present 

L

R

B

F

4 Tasks

Backprop
N×1

Labels

Intra-feature Modeling Intra-feature
Relationship
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Topological 
Structure 

of Features
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Experimental Results - Groupwise Prediction

Note:
(1) Box Plot (Maximum Score, Upper Quartile, Median, Lower Quartile, and Minimum Score)
(2) Confusion Matrix: TP, TN, FP, and FN 62



Experimental Results - Groupwise PredictionExperimental Results - Subject-Specific Adaptation
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Takeaways and Future Work
ü Spatial-Temporal Analysis

(1) Converge to both Subject-level and Groupwise Predictions and handle Individual Variability.

(2) The 0.4-s sample size Time-Resolved Solution toward fast response.

ü Deep Feature Mining

(1) ↑ Highest Accuracy

(2) Advance Clinical Translation of EEG-based BCI technology to meet diverse demands, such as those of paralyzed 

patients.

ü Future Work

Long-range Dependencies among intra-subject or inter-subject EEG signals can be modeled via Non-local Modeling,

Self-attention Mechanism, Transformer, and AI foundation Models.

64



Thank you!
Any question?

Acknowledgment: Dr. Zhijian Hou and Dr. Dingquan Li.
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