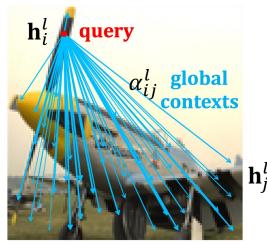

A Brief Summary of Three Selected Projects

Tasks

✓ Image Quality Assessment (IQA) **Regression**


No-reference Image Quality Assessment Framework

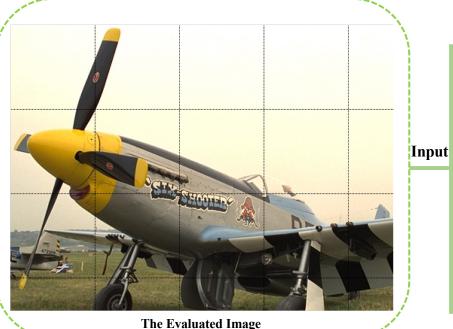
A Brief Summary of Three Selected Projects

IQA Research Novelty

- ✓ [Definition] <u>Non-local Modeling</u> and Local Modeling
- ✓ [**Definition**] <u>Global Distortions</u> and <u>Local Distortions</u>
- ✓ [Motivation] Human Visual System (HVS) perceives Image Quality:
 - Adaptive to local content + Long-range dependency constructed among different regions
- ✓ [Method] Superpixel-based Graph Neural Network to explore Non-local Interactions

Local Modeling

Non-local Modeling



Global Distortions

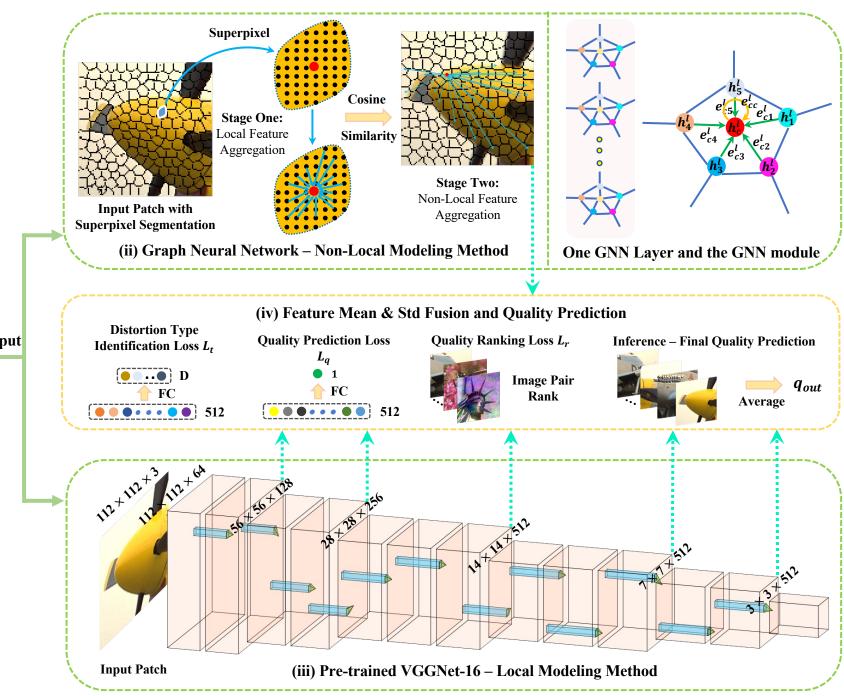
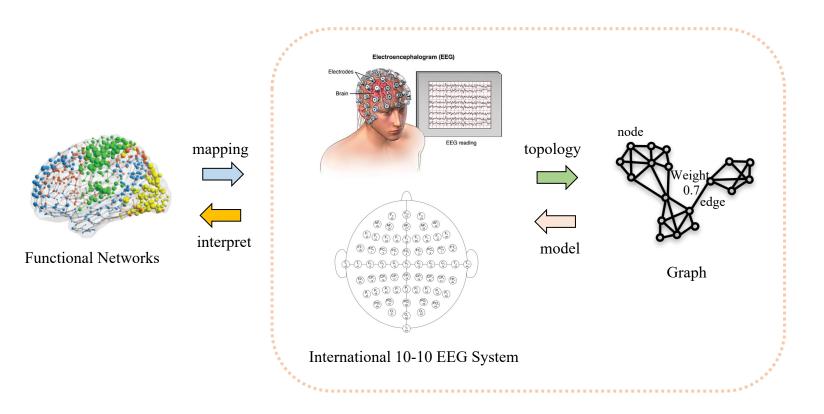

Local Distortions

Image Credit: LIVEC, TID2013, CSIQ, and KADID-10k Databases.

NLNet Architecture

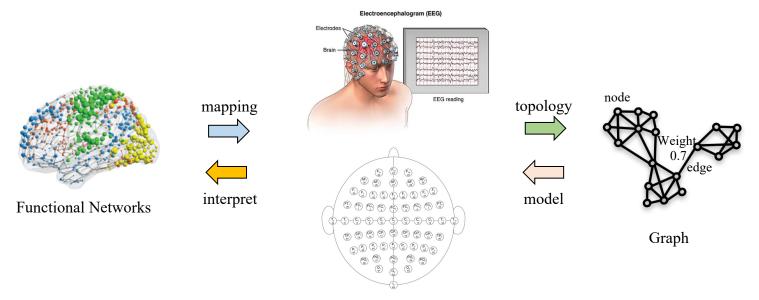
(i) Image Preprocessing


A Brief Summary of Three Selected Projects

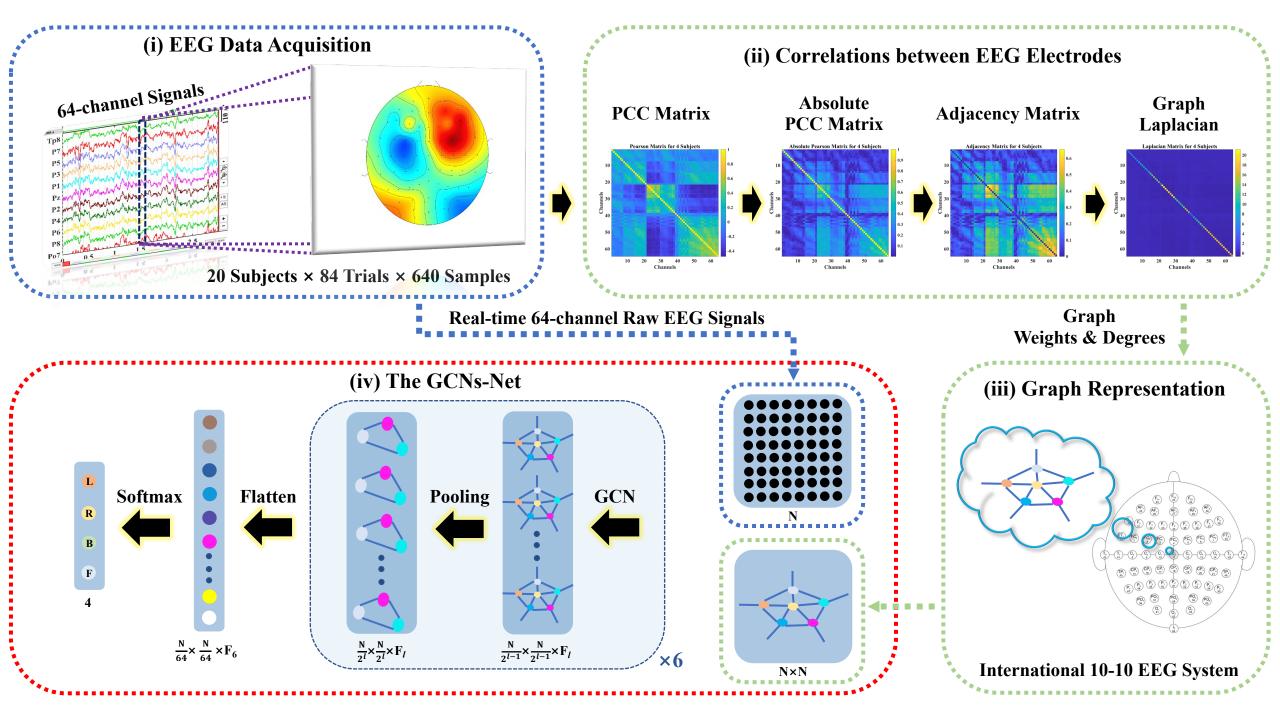
Tasks

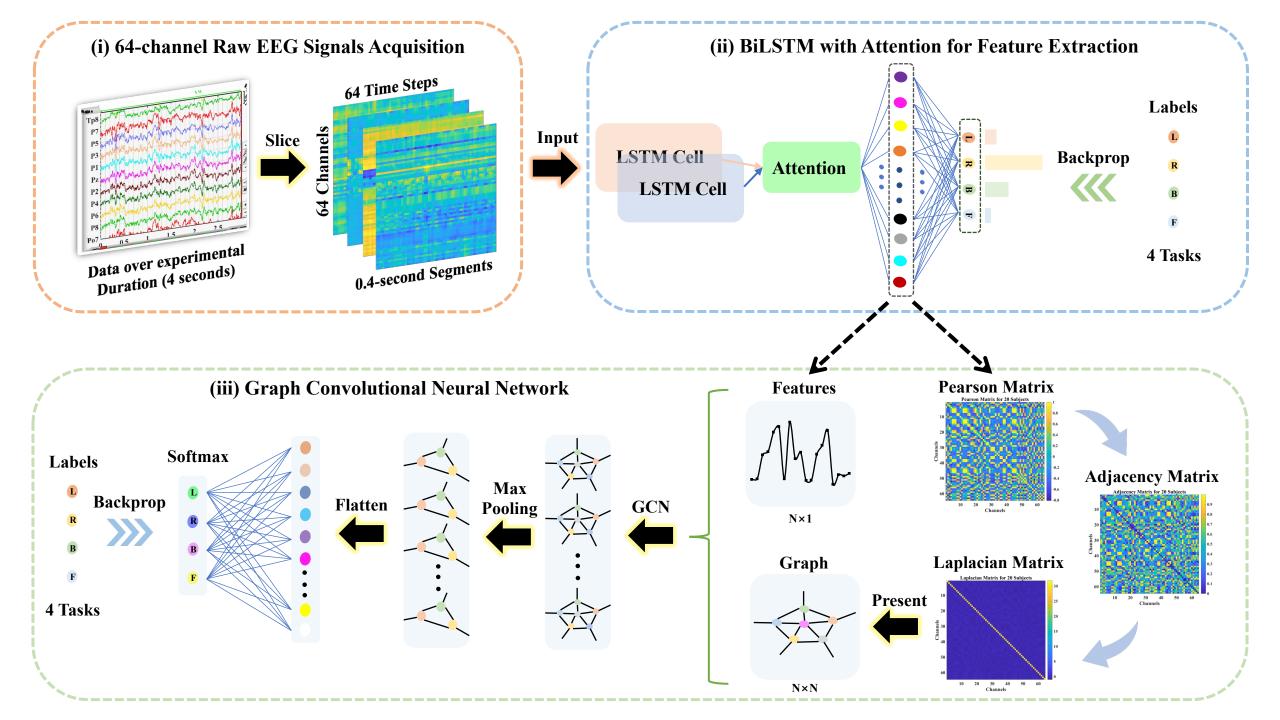
✓ Electroencephalogram (EEG) Tasks Classification

Control a wheelchair via EEG

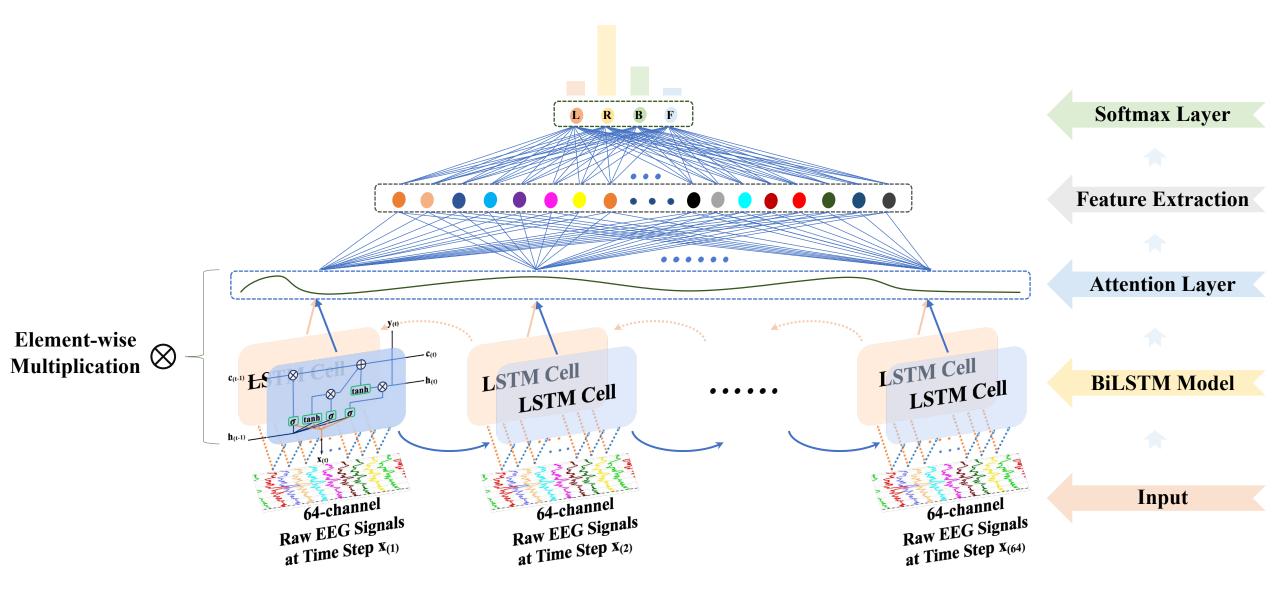


Interpret Functional Networks and better understand human brain


A Brief Summary of Three Selected Projects


EEG Research Novelty

- ✓ [Motivation] Graph Modeling for EEG Electrodes System
- ✓ [Method] Graph Representation Learning of EEG Signals
- ✓ [Motivation] Spatial-Temporal Analysis of EEG Signals
- ✓ [Method] Deep Feature Mining of EEG Signals



International 10-10 EEG System

Attention-based Bidirectional Long Short-term Memory (Bi-LSTM)

A Brief Summary of Three Selected Projects

Tasks

✓ **Regression** (IQA) and **Classification** (EEG)

IQA Research Novelty

- ✓ [Definition] <u>Non-local Modeling</u> and Local Modeling
- ✓ [Definition] <u>Global Distortions</u> and <u>Local Distortions</u>
- ✓ [Motivation] Human Visual System (HVS) perceives Image Quality:

Adaptive to local content + Long-range Dependency constructed among different regions

✓ [Method] Superpixel-based Graph Neural Network to explore Non-local Interactions

EEG Research Novelty

- ✓ [Motivation] Graph Modeling for EEG Electrodes System
- ✓ [Method] Graph Representation Learning of EEG Signals
- ✓ [Motivation] Spatial-Temporal Analysis of EEG Signals
- ✓ [Method] Deep Feature Mining of EEG Signals

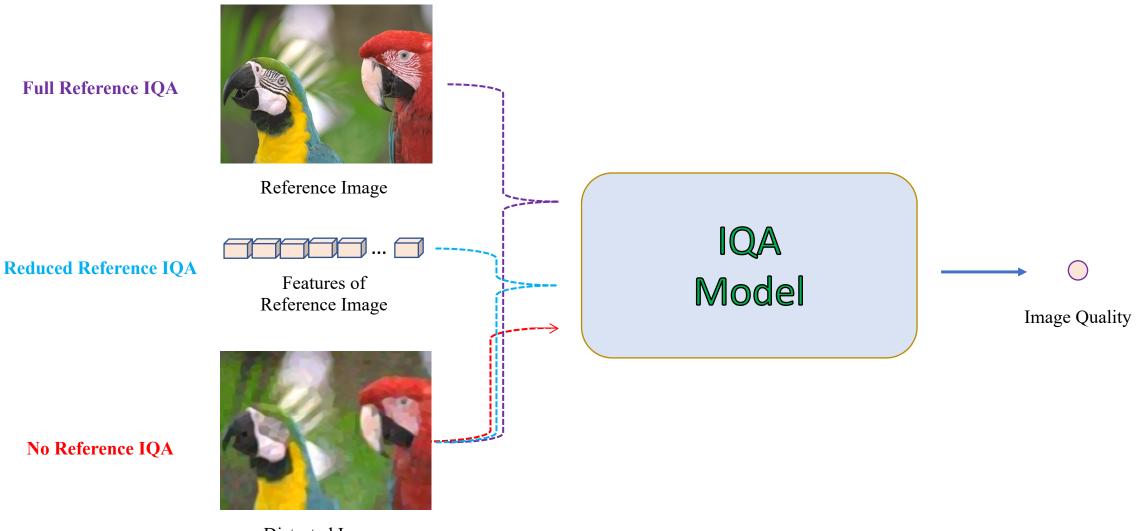
No-reference Image Quality Assessment via Non-local Modeling

GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding Time-Resolved EEG Motor Imagery Signals

Deep Feature Mining via Attention-based BiLSTM-GCN for Human Motor Imagery Recognition

Selected Research Projects

Shuyue Jia January 10th, 2023 https://github.com/SuperBruceJia


No-reference Image Quality Assessment via Non-local Modeling

Shuyue Jia¹, Baoliang Chen¹, Dingquan Li², and Shiqi Wang^{1*}

¹ Department of Computer Science, City University of Hong Kong ² Peng Cheng Laboratory

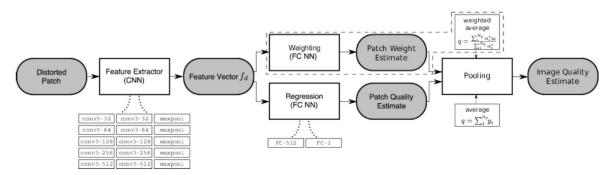
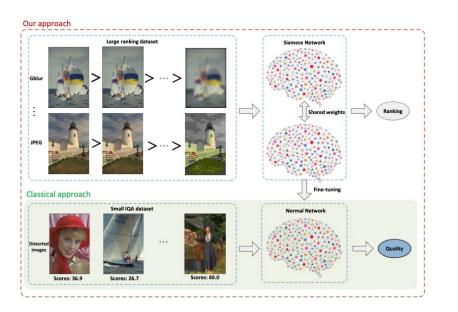
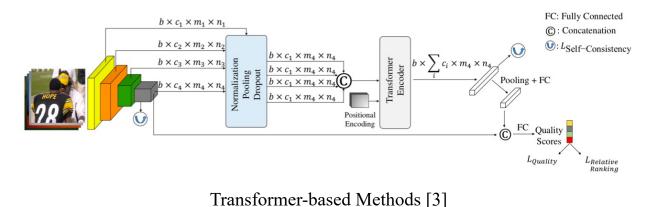

Project: https://github.com/SuperBruceJia/NLNet-IQA

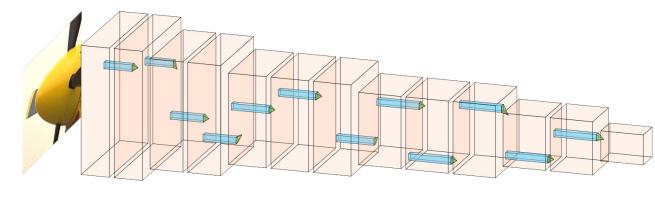
Image Quality Assessment (IQA)




Distorted Image

Recent Progress on No-reference IQA

CNN-based Methods [1]



Ranking-based Methods [2]

Credit:

- [1] Bosse et al., Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment, In TIP 2018
- [2] Liu et al., RankIQA: Learning from Rankings for No-reference Image Quality Assessment, In ICCV 2017
- [3] Golestaneh et al., No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency, In WACV 2022

Challenges

Convolutional Neural Networks

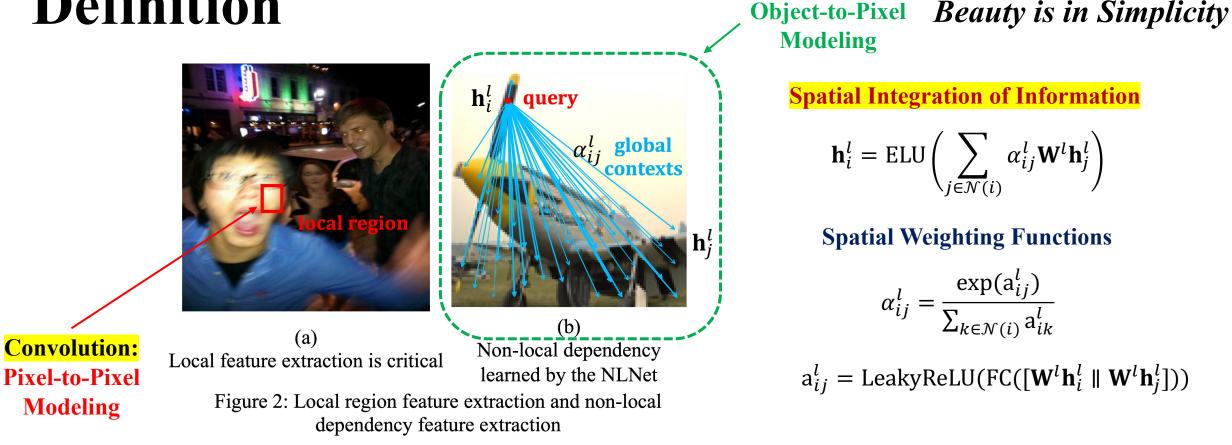
- Local Modeling (Convolutional Neural Networks):
 - ✓ Translation Invariance (Pooling)
 - ✓ Translation Equivalence (Convolution)
 - ✓ Sharable Parameters (Weight Sharing)
- Limitations:
 - ✓ Small-sized Receptive Field → Extracted features are too local
 - ✓ Parameters Fixed across the whole image → Image content is equally treated
 - ✓ Lack of Geometric and Relational Modeling \rightarrow Missing complex relations and dependencies

Motivation

Local Feature Extraction

Non-local Dependency

✓ HVS is <u>adaptive to the local content</u>


 \rightarrow *Local feature extraction* via a pre-trained CNN

✓ HVS perceives image quality with <u>long-range dependency constructed among different regions</u>

 \rightarrow *Non-local feature extraction* for long-range dependency and relational modeling

Image Credit: LIVEC and TID2013 Databases

Definition

- **Local Modeling**: encodes spatially proximate **Local Neighborhoods**. \checkmark
- **Non-local Modeling:** establishes **Spatial Integration of Information** by **Long- and Short-Range** \checkmark

Communications with different Spatial Weighting Functions.

Non-Local:

Image Credit: TID2013 and LIVEC Databases

Non-local Behavior

Object-to-Pixel Modeling Region Feature Extraction

Non-local **Dependency & Relational** Modeling

Semantics and Content Understanding

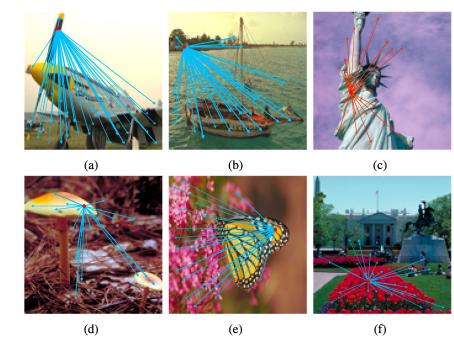
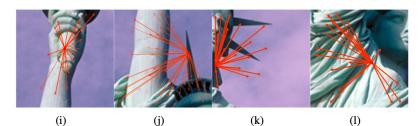


Figure 3.1: The non-local behavior of the long-range dependency and relational modeling. (a) The plane image with a query on wings. (b) The boat image with a query on nearby river bank. (c) The Statue of Liberty image with a query on the lady. (d) The shrooms image with a query on one shroom. (e) The butterfly image with a query on the wing. (f) The Lafayette Square, Washington, D.C. image with a query on flowers.



(c) (b) (a)

(h)

(f) (g) (e)

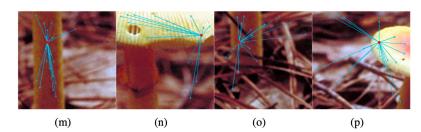


Figure 3.2: Selected demonstrations of the non-local behavior and long-range dependencies with regard to the cropped image patches from the illustrated images. The details of Figure (a) to (p) are described in the thesis.

Non-local Modeling: establishes the Spatial Integration of Information \checkmark

by Long- and Short-Range Communications with different Spatial Weighting Functions.

Image Credit: TID2013 and LIVE Databases

Definition

Non-Local Recurrence

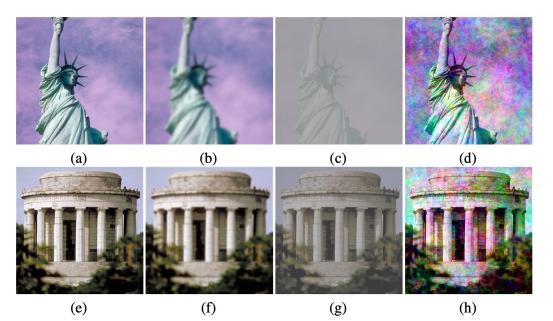
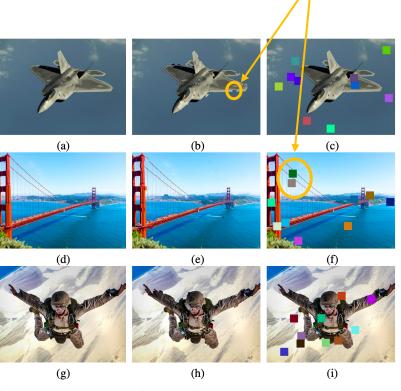
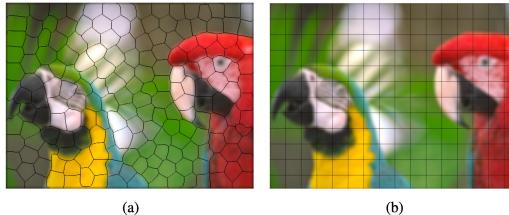



Figure 4.9: Demonstrations of the global distortions (b/f: GB, c/g: CC, d/h: PN) contaminating the Statue of Liberty and George Rogers Clark Memorial images. Figure (a) and Figure (e) are reference images from the CSIQ database.

Global Distortion

Local Distortion


Figure 4.11: Demonstrations of the local distortions (b/e/h: non-eccentricity patch and c/f/i: color block). Figure (a), Figure (d), and Figure (g) are reference images from the KADID-10k database.

Local Distortion

- ✓ Global Distortion: globally and uniformly distributed distortions with non-local recurrences over the image.
- ✓ Local Distortion: local nonuniform-distributed distortions in a local region.

Image Credit: CSIQ and KADID-10k Databases

Superpixel Segmentation

(b)

(c)

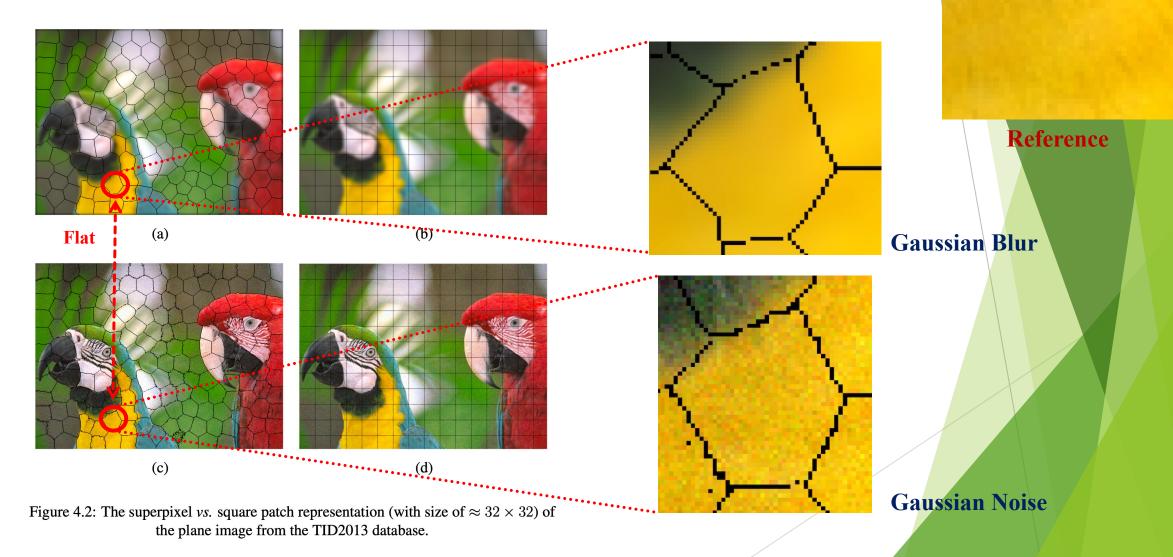

(d)

Figure 4.2: The superpixel vs. square patch representation (with size of $\approx 32 \times 32$) of the plane image from the TID2013 database.

Superpixel vs. Square Patch

- Adherence to boundaries and \checkmark visually meaningful
- Accurate feature extraction \checkmark

Superpixel Segmentation

Superpixel Segmentation

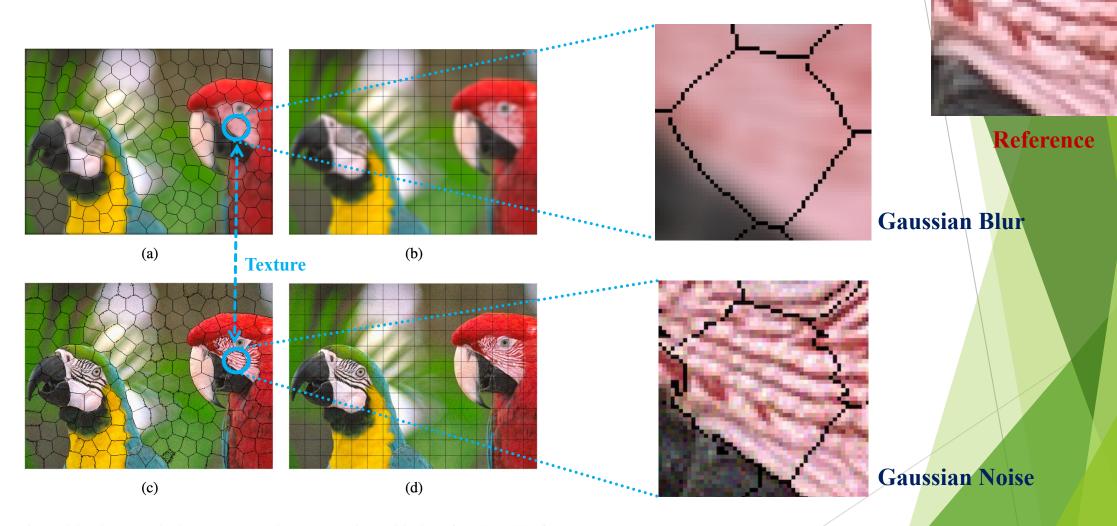
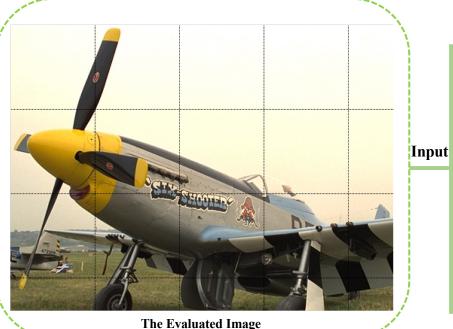
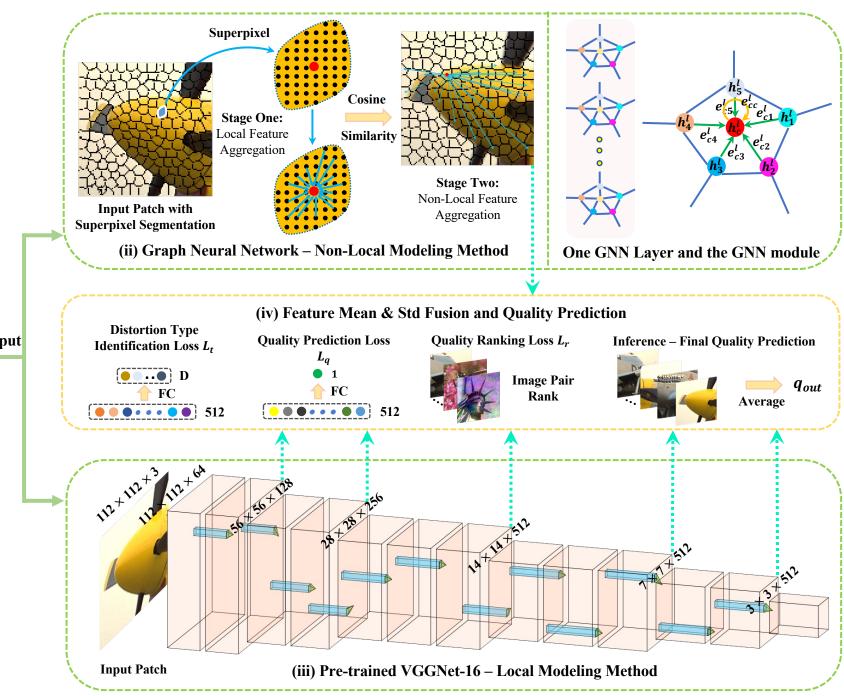




Figure 4.2: The superpixel vs. square patch representation (with size of $\approx 32 \times 32$) of the plane image from the TID2013 database.

NLNet Architecture

(i) Image Preprocessing

Experimental Setup

• Databases:

- ✓ LIVE, CSIQ, TID2013, and KADID-10k
- Evaluation Metrics:
 - ✓ SRCC (Spearman Rank-order Correlation Coefficient)
 - ✓ PLCC (Pearson Linear Correlation Coefficient)

• Experimental Settings:

- ✓ Intra-Database Experiments:
 - \rightarrow 60% training, **20% validation**, and 20% testing, with `random` seeds from 1 to 10
 - \rightarrow The median SRCC and PLCC are reported.
- ✓ Cross-Database Evaluations:
 - → One database as the training set, and the other databases as the testing set
 - \rightarrow Report the last epoch's performance

Natural

Images

Figure 1.1: Natural images and a screen content image from the constructed databases. (a) LIVE Database [13] (b) CSIQ Database [14] (c) TID2013 Database [15] (d) KADID-10k Database [16].

Table 4.1: Brief summary of the LIVE, CSIQ, TID2013, and KADID-10k databases.

Database	LIVE [13]	CSIQ [14]	TID2013 [15]	KADID-10k [16]
Num. of Reference Images	29	30	25	81
Num. of Distorted Images	779	866	3,000	10,125
Num. of Distortion Types	5	6	24	25
Num. of Distortion Levels	$5\sim 8$	$3\sim 5$	5	5
Annotation	DMOS	DMOS	MOS	MOS
Range	[0, 100]	[0, 1]	[0, 9]	[1, 5]

Screen Content

Intra-Database Experiments

Table 4.2: Performance comparisons on the LIVE, CSIQ, and TID2013 databases.Top two results are highlighted in bold.

	Method	LIVE		CS	IQ	TID2013	
	Method	SRCC	PLCC	SRCC	PLCC	SRCC	PLCC
	BRISQUE (2012) [10]	0.939	0.935	0.746	0.829	0.604	0.694
	CORNIA (2012) [104]	0.947	0.950	0.678	0.776	0.678	0.768
	M3 (2015) [105]	0.951	0.950	0.795	0.839	0.689	0.771
	HOSA (2016) [103]	0.946	0.947	0.741	0.823	0.735	0.815
	FRIQUEE (2017) [90]	0.940	0.944	0.835	0.874	0.68	0.753
	DIQaM-NR (2018) [35]	0.960	0.972	-	-	0.835	0.855
	DB-CNN (2020) [64]	0.968	0.971	0.946	0.959	0.816	0.865
	HyperIQA (2020) [65]	0.962	0.966	0.923	0.942	0.729	0.775
SOTA	GraphIQA (2022) [86]	0.968	0.970	0.920	0.938		-
	TReS (2022) [87]	0.969	0.968	0.922	0.942	0.863	0.883
Transformer	NLNet	0.962	0.963	0.941	0.958	0.856	0.880

Fewer Training Data ↓ 20% Total Data ↑ Highly Competitive Performance

Table 4.3: Performance comparisons on the KADID-10k database.

Top two results are highlighted in bold.

							[]	\frown
Method	BRISQUE [10]	CORNIA [104]	HOSA [103]	InceptionResNetV2 [16]	DB-CNN [64]	HyperIQA [65]	TReS [87]	NLNet
SRCC	0.519	0.519	0.609	0.731	0.851	0.852	0.859	0.846
PLCC	0.554	0.554	0.653	0.734	0.856	0.845	0.858	0.850
							<u> </u>	$\overline{}$

Cross-Database Settings and Evaluations

Table 4.9: Cross-database performance comparisons.

Training	LI	VE	C	SIQ	TID	2013
Testing	CSIQ	PID2013	B LIVE	TID2013	LIVE	CSIQ
BRISQUE (2012) [10]	0.562	0.358	0.847	0.454	0.790	0.590
CORNIA (2012) [104]	0.649	0.360	0.853	0.312	0.846	0.672
M3 (2015) [105]	0.621	0.344	0.797	0.328	0.873	0.605
HOSA (2016) [103]	0.594	0.361	0.773	0.329	0.846	0.612
FRIQUEE (2017) [90]	0.722	0.461	0.879	0.463	0.755	0.635
DIQaM-NR (2018) [35]	0.681	0.392	-	-	-	0.717
DB-CNN (2020) [64]	0.758	0.524	0.877	0.540	0.891	0.807
HyperIQA (2020) [65]	0.697	0.538	0.905	0.554	0.839	0.543
NLNet	0.771	0.497	0.923	0.516	0.895	0.730

Similar Distortions TID: More Distortion Types & Levels

Table 4.4: The average SRCC and PLCC results of the individual distortion type onthe LIVE database. Top two results are highlighted in bold.

							Contraction of the second s
SRCC		Global D	Distortion	n	Local Distortion	Noisy	
bitee	JPEG	JP2K	WN	GB	FF	and	(a)
BRISQUE (2012) [10]	0.965	0.929	0.982	0.964	0.828	Compressed	
CORNIA (2012) [104]	0.947	0.924	0.958	0.951	0.921	· · ·	A Contract
M3 (2014) [105]	0.966	0.930	0.986	0.935	0.902	Images	Notes
HOSA (2016) [103]	0.954	0.935	0.975	0.954	0.954		大学 家 计 (书)
FRIQUEE (2017) [90]	0.947	0.919	0.983	0.937	0.884		
dipIQ (2017) [82]	0.969	0.956	0.975	0.940	-		(b)
WaDIQaM (2018) [35]	0.953	0.942	0.982	0.938	0.923	Global	
DB-CNN (2020) [64]	0.972	0.955	0.980	0.935	0.930	 Distortion 	
HyperIQA (2020) [65]	0.961	0.949	0.982	0.926	0.934		
NLNet 🔇	0.979	0.958	0.990	0.964	0.941	Non-local	The second of th
PLCC		Jobal L	Distortio	n	Local Distortion	Recurrence	
FLCC	JPEG	JP2K	WN	GB	FF		
BRISQUE (2012) [10]	0.971	0.940	0.989	0.965	0.894	Local	(c)
CORNIA (2012) [104]	0.962	0.944	0.974	0.961	0.943	Local	1
M3 (2014) [105]	0.977	0.945	0.992	0.947	0.920	Distortion 🥆	× <u> </u>
HOSA (2016) [103]	0.967	0.949	0.983	0.967	0.967		
FRIQUEE (2017) [90]	0.955	0.935	0.991	0.949	0.936		
dipIQ (2017) [82]	0.980	0.964	0.983	0.948	-		
DB-CNN (2020) [64]	0.986	0.967	0.988	0.956	0.961		
NLNet	0.986	0.961	0.993	0.964	0.951		(d)
	l						Figure 4.7: Demonstra

(e) (f) (g)

Figure 4.7: Demonstrations of the global distortions (b/f: WN and c/g: JPEG) and local distortions (d/h: FF) contaminating the plane and parrot images. Figure (a) and Figure (e) are reference images from the LIVE database.

(h)

Image Credit: LIVE Database

	1 A		
(a)	(b)	(c)	(d)
	III		
(e)	(f)	(g)	(h)
	(

Figure 4.9: Demonstrations of the global distortions (b/f: GB, c/g: CC, d/h: PN) contaminating the Statue of Liberty and George Rogers Clark Memorial images. Figure (a) and Figure (e) are reference images from the CSIQ database.

Table 4.5: The average SRCC and PLCC results of the individual distortion type on the CSIQ database. Top two results are highlighted in bold.

EG	SRCC	JP2K	WN	GB	PN	CC	
306	BRISQUE (2012) [10]	0.840	0.723	0.820	0.378	0.804	
513	CORNIA (2012) [104]	0.831	0.664	0.836	0.493	0.462	
740	M3 (2014) [105]	0.911	0.741	0.868	0.663	0.770	
733	HOSA (2016) [103]	0.818	0.604	0.841	0.500	0.716	Globa
369	FRIQUEE (2017) [90]	0.846	0.748	0.870	0.753	0.838	Distorti
936	dipIQ (2017) [82]	0.944	0.904	0.932	-	-	DISTOL
948	MEON (2018) [71]	0.898	0.951	0.918	-	-	/
353	WaDIQaM (2018) [35]	0.947	0.974	0.979	0.882	0.923	
940	DB-CNN (2020) [64]	0.953	0.948	0.947	0.940	0.870	
934	HyperIQA (2020) [65]	0.969	0.927	0.915	0.931	0.874	
072	NLNet	0.963	0.965	0.955	0.969	0.968	
EG	PLCC	JP2K	WN	CB	ΓN	CC	
	BRISQUE (2012) [10]	0.887	0.742	0.891	0.496	0.835	
328	CORNIA (2012) [104]	0.883	0.687	0.904	0.632	0.543	
	M3 (2014) [105]	0.928	0.728	0.917	0.717	0.787	
563					0 (01	0744	
563 768	HOSA (2016) [103]	0.899	0.656	0.912	0.601	0.744	
563 768 759	HOSA (2016) [103] FRIQUEE (2017) [90]	0.899 0.883	0.656 0.778	0.912 0.905	0.601 0.769	0.744 0.864	
563 768 759 385	()[]						
563 768 759 385 975	FRIQUEE (2017) [90]	0.883	0.778	0.905			
563 768 759 385 975 979	FRIQUEE (2017) [90] dipIQ (2017) [82]	0.883 0.959	0.778 0.927	0.905 0.958		0.864 - -	

Image Credit: CSIQ Database

Noise-Related

Distortions

Table 4.6: The average SRCC results of the individual distortion type on the TID2013database. Top two results are highlighted in bold.

SRCC	Distortion Type	BRISQUE [10]	FRIQUEE [90]	HOSA [103]	MEON [71]	M3 [105]	DB-CNN [64]	CORNIA [104]	NLNet
	Additive Gaussian noise	0.711	0.730	0.833 <mark>^8</mark> .	4%813	0.766	0.790	0.692	0.917
	Lossy compression of noisy images	0.609	0.641	0.838	0.772	0.692	0.860^7.	5% 0.712	0.935
	Additive noise in color components	0.432	0.573	0.551	0.722	2.8%	0.700	0.137	0.850
	Comfort noise	0.196	0.318	0.622	0.406	0.353	0.752 11	8% 0.617	0.870
	Contrast change	-0.001	0.585	0.362	0.252	0.155	0.548	0.254	0.793
	Change of color saturation	0.003	0.589	0.045	0.684	-0.199	0.631	0.169	0.827
	Spatially correlated noise	0.746	0.866	0.842	0.926 <mark>^3</mark> .		0.826	0.741	0.958
	High frequency noise	0.842	0.847	0.897	0.911	0%000	0.879	0.815	0.921
	Impulse noise	0.765	0.730	0.809	0.901	2% 738	0.708	0.616	0.913
Global	Quantization noise	0.662	0.764	0.815	0.888	1 9/832	0.825	0.661	0.929
Distortion	Gaussian blur	0.871	0.881	0.883	0.887	0.896	0.859	0.850	0.912
	Image denoising	0.612	0.839	0.854	0.797	0.709		7% 0.764	0.882
	JPEG compression	0.764	0.813	0.891	0.850	0.844	0.894	0.797	0.905
	JPEG 2000 compression	0.745	0.831	0.919		0.885	0.916	0.846	0.930
	Multiplicative Gaussian noise	0.717	0.704	0.768	0.849 <mark>^ 5</mark> .	5%3 38	0.711	0.593	0.904
	Image color quantization with dither	0.831	0.768	0.896	0.857	0.908	0.833	0.683	0.911
	Sparse sampling and reconstruction	0.807	0.891	0.909	0.855	0.893	0.902	0.865	0.940
	Chromatic aberrations	0.615	0.737	0.753	0.779	0.570	0.732	0.696	0.773
	Masked noise	0.252	0.345	0.468	0.728	0.577	0.646	0.451	0.700
	Mean shift (intensity shift)	0.219	0.254	0.211	0.177	0.119	-0.009	0.232	0.358
	JPEG transmission errors	0.301	0.498	0.730	0.746	0.375	0.772 ↑ 3 .	3% 0.694	0.805
Local	JPEG 2000 transmission errors	0.748	0.660	0.710	0.716	0.718	0.773 10	.2% .686	0.875
Distortion	Non eccentricity pattern noise	0.269	0.076	0.242	0.116	0.173	0.270	.6%8.200	0.616
	Local bock-wise distortions with different intensity	0.207	0.032	0.268	0.500	0.379	0.444	0.027	0.493

Noise and Compression-Related Distortions

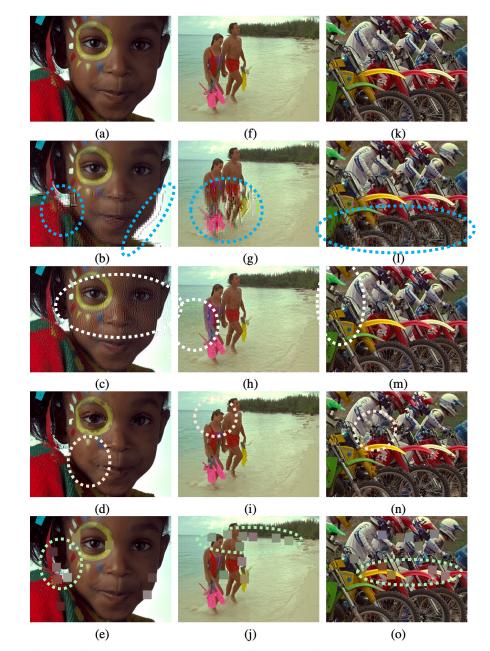


Figure 4.10: Demonstrations of the local distortions (b/g/l: JPEG transmission errors, c/h/m: JPEG2000 transmission errors, d/i/n: non eccentricity pattern noise, e/j/o: local block-wise distortions of different intensity). Figure (a), Figure (f), and Figure (k) are reference images from the TID2013 database.

Table 4.7: The average SRCC results of the individual distortion type on the KADID-10k database. The local distortions are highlighted in blue and the top two results are highlighted in bold.

Dis	stortion Type	BLIINDS-II [91]	BRISQUE [10]	ILNIQE [102]	CORNIA [104]	HOSA [103]	WaDIQaM [35]	NLN
	Lens blur	0.781	0.674	0.846	0.811	0.715	0.730	0.91
Blurs	Gaussian blur	0.880	0.812	0.883	0.866	0.852	0.879	0.91
	Motion blur	0.482	0.423	0.779	0.532	0.652	0.730	0.89
	Color diffusion	0.572	0.544	0.678	0.243	0.727	0.833	0.91
	Color saturation 2	0.602	0.375	0.677	0.120	0.841	0.836	0.9
Color distortions	Color quantization	0.670	0.667	0.676	0.323	0.662	0.806	0.8
	Color shift	-0.139	-0.182	0.090	-0.002	0.050	0.421	0.72
	Color saturation 1	0.091	0.071	0.027	-0.019	0.216	0.148	0.6
Commercian	JPEG compression	0.414	0.782	0.804 ↑6.	2% 0.556	0.582	0.530	0.8
Compression	JPEG 2000 compression	0.655	0.516	0.790 ↑6 .	3% 0.342	0.608	0.539	0.8
	Denoise	0.457	0.221	0.856 ^9 .	7% 0.229	0.247	0.765	0.9
	White noise in color component	0.757	0.718	0.841	0.418		1% 0.925	0.9
Noise	Multiplicative noise	0.702	0.674	0.682	0.306		0% 0.884	0.9
	Impulse noise	0.547	-0.543	0.808	0.219		.2%0.814	0.9
	White Gaussian noise	0.628	0.708	0.776	0.357	0.680 ^1. ′	<mark>7%</mark> 0.897	0.9
	Brighten	0.458	0.575	0.301	0.227	0.753	0.685	0.8
Brightness change	Darken	0.439	0.405	0.436	0.206	0.744	0.272	0.6
	Mean Shift	0.112	0.144	0.315	0.122	0.591	0.348	0.3
	Jitter	0.629	0.672	0.441	0.719	0.391	0.778	0.8
	Pixelate	0.196	0.648	0.577	0.587	0.702	0.700	0.8
Spatial distortions	Quantization	0.781	0.714	0.571	0.259	0.681	0.735	0.7
	Color block	-0.020	0.067	0.003	0.094	0.388	0.160	0.4
	Non-eccentricity patch	0.083	0.191	0.218	0.121	0.461	0.348	0.4
hompass and contract	High sharpen	-0.015	0.361	0.681	0.114	0.230	0.558	0.9
sharpness and contrast	Contrast change	0.062	0.105	0.072	0.125	0.452	0.421	0.5

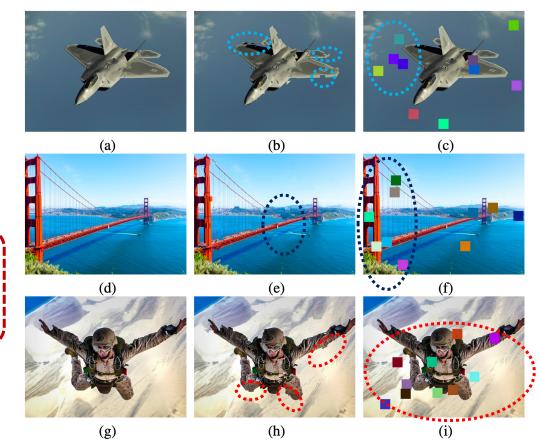


Figure 4.11: Demonstrations of the local distortions (b/e/h: non-eccentricity patch and c/f/i: color block). Figure (a), Figure (d), and Figure (g) are reference images from the KADID-10k database.

Takeaways and Future Work

✓ Non-local & Local Modeling

(1) The **Non-local Modeling is complementary** to traditional local methods.

(2) CNN's Local Modeling features are effective and robust.

✓ Global & Local Distortions

(1) Handle a wide variety of **Global Distortions**: globally and uniformly distributed with non-local recurrences.

(2) Maintain sensitivity to Local Distortions: local nonuniform-distributed distortions in a local region.

(3) Better assess Noisy and Compressed Images quality.

✓ **Generalization Capability** Cross-Dataset Setting → **High Generalization Capability**

✓ **Future Work** Non-local Statistics [1, 2]

Credit:

[1] Zontak et al., Internal Statistics of a Single Natural Image, In CVPR 2011

[2] Buades et al., A Non-local Algorithm for Image Denoising, In CVPR 2005

GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding Time-Resolved EEG Motor Imagery Signals

Yimin Hou¹, Shuyue Jia^{1, 2}, Xiangmin Lun¹, Ziqian Hao³, Yan Shi¹,

Yang Li⁴, Rui Zeng⁵, and Jinglei Lv^{5*}

¹ School of Automation Engineering, Northeast Electric Power University

² Department of Computer Science, City University of Hong Kong

³ Jinan Vocational College

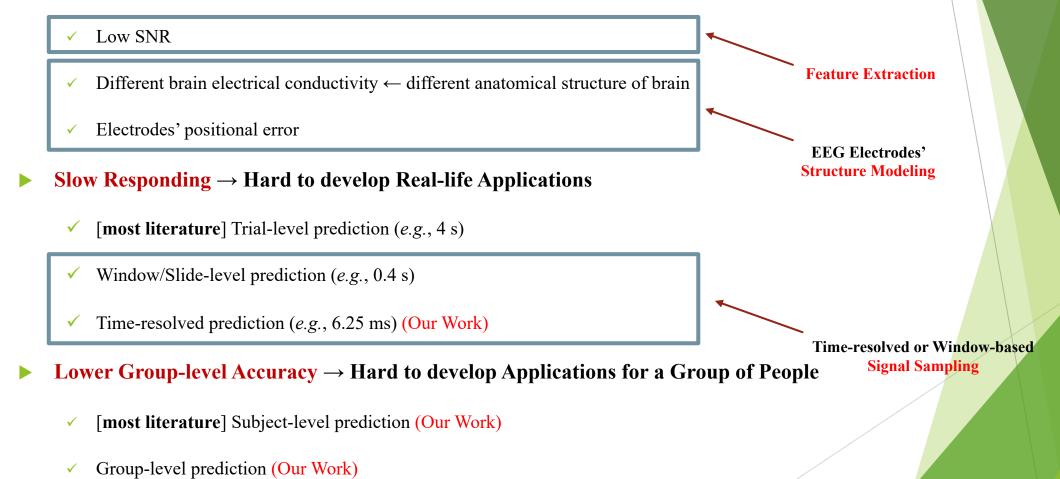
⁴ School of Electrical Engineering, Northeast Electric Power University
 ⁵ School of Biomedical Engineering and Brain and Mind Center, The University of Sydney

EEG Deep Learning Library: https://github.com/SuperBruceJia/EEG-DL

Background

- **BCI**: establish connections between the brain and machines
 - (1) Acquire and analyze brain signals while conducting actual or imagery tasks
 - (2) Control machines
- **Significance**: help the disabled and understand the human brain
- **Types of BCI:**
 - ► Electroencephalography (EEG)
 - Magnetoencephalography (MEG)
 - ► Functional Magnetic Resonance Imaging (fMRI)
 - ▶ Invasive BCI Technologies (*e.g.*, Neuralink)
- **Reasons for using EEG for this project:**
 - Non-Invasiveness
 - ▶ High Temporal Resolution
 - Portability

- A potential market
- Inexpensive Equipment



- **Specific Task**: EEG Motor Imagery (*e.g.*, control a wheelchair via imagery-based EEG signals)
- **Our Research**: develop EEG-based BCI technologies to improve current stroke rehabilitation strategies

Image Credit: in the public domain.

Key Points in dealing with EEG time series

► Individual Variability → Lower Classification Accuracy

Motivation

Convolutional Neural Networks:

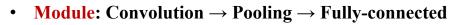
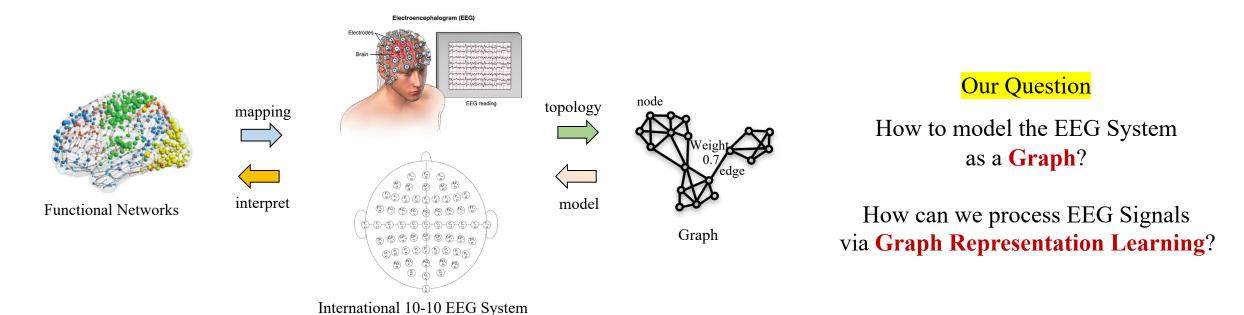
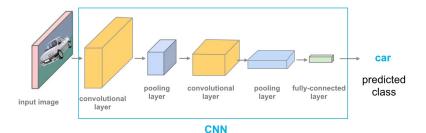
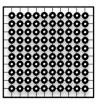
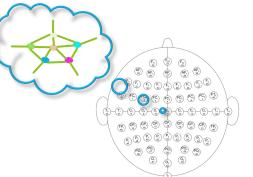





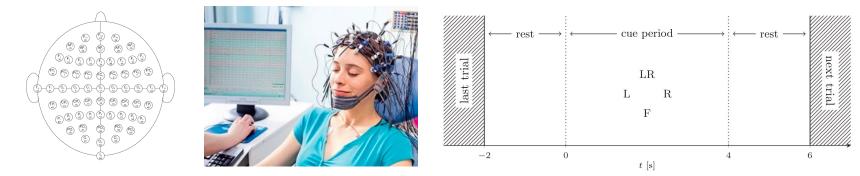
Image Credit: The PhysioNet Dataset and the Functional Network Image is in the public domain.

- Modeling: Euclidean-Structured Data (e.g., Image, Speech, Natural Language)
- Neuroscience research has increasingly emphasized Brain Network Dynamics
 - Model **Functional Topological Connectivity** of EEG Electrodes → **Graph** (Non-Euclidean Structure)



Can we directly apply convolutions on graphs?

Traditional CNN cannot directly process graph signals


- **Graph is irregular** (*i.e.*, unordered and vary in size)
- Convolution cannot keep Translation Invariance on non-Euclidean signals
- Graph Convolutional Neural Networks (GCN)
 - Directly process non-Euclidean graph-structured signals
 - Consider relational properties (*e.g.*, correlations) between nodes
 - \rightarrow Model Functional Topological Relationships among EEG electrodes
 - → Analyze and interpret **Brain Network Dynamics**

Benchmark Dataset

- The PhysioNet Dataset (EEG Motor Movement/Imagery Dataset)
- International 10-10 EEG System \rightarrow 64 electrodes

(excluding electrodes Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9, and P10)

- **109 subjects** (the largest number of participants in the field of EEG Motor Imagery)
- Task: 4-class EEG Motor Imagery Classification
 - Imagining (Task 1) left fist, (Task 2) right fist, (Task 3) both fists, (Task 4) both feet
- Each subject \rightarrow 3 runs, 7 trials, 4 classes \rightarrow 84 trials in total
- Each trial \rightarrow 4 seconds experimental duration, 160 Hz Sampling Rate \rightarrow 640 Time Points
- ► We apply the **Time-resolved Sampling Method**
 - \checkmark Total samples per subject: 3 runs \times 7 trials \times 4 classes \times 4 seconds \times 160 Hz = 53,760 samples
 - Experimental Setting: 90% as the training set and the left 10% as the test set

Image Credit: The PhysioNet Dataset and the middle image is in the public domain.

Preliminary: Graph Representation

Definition: An Undirected and Weighted Graph with N nodes: $\mathbf{G} = \{\mathbf{V}, \mathbf{E}, \mathbf{A}\}$

- V: nodes (vertices), $|\mathbf{V}| = N$
- E: edges (links) that connect nodes
- A: weights (correlations) between nodes

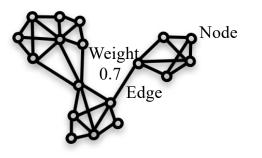
Nodes Correlations: Pearson Matrix $\mathbf{P} \in \mathbb{R}^{N \times N}$ (denotes as PCC matrix)

- Measure the linear correlations between node \mathbf{x} and node \mathbf{y}
- $-\mu$ is the mean, σ is the standard deviation, and $P_{x,y}$ is the Pearson Correlation Coefficient between node x and node y

$$P_{x,y} = \frac{\mathrm{E}((\mathbf{x} - \mu_x)(\mathbf{y} - \mu_y))}{\sigma_x \sigma_y}$$

- Absolute Pearson Matrix: $|\mathbf{P}| \in \mathbb{R}^{N \times N}$ and $|P_{ij}| \in [0, 1] \rightarrow \text{Note}$: In this work, we only consider scale.

Graph Weights: Adjacency Matrix $\mathbf{A} = |\mathbf{P}| - \mathbf{I} \in \mathbb{R}^{N \times N}$, where **I** is an Identity Matrix **Graph Degrees**: Degree Matrix $\mathbf{D} \in \mathbb{R}^{N \times N}$


$$D_{ii} = \sum_{j=1}^{N} A_{ij}$$

Graph Representation: Combinatorial Laplacian $\mathbf{L} \in \mathbb{R}^{N \times N}$

$$\mathbf{L} = \mathbf{D} - \mathbf{A}$$

Normalized:

$$\mathbf{L} = \mathbf{I} - \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{\frac{1}{2}}$$

Preliminary:

Spectral Theorem for Graph Laplacian L

 $\mathbf{L} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathrm{T}}$ $\mathbf{L} \mathbf{U} = \mathbf{\Lambda} \mathbf{U}$

– U: Fourier basis \rightarrow real and orthonormal <u>eigenvectors</u> of L

- Λ : Fourier modes \rightarrow the diagonal is the **ordered** and **real nonnegative** <u>eigenvalues</u> of L

Graph Fourier Transforms of Signal f

can be seen as the $e^{-j\omega t}$ in Fourier Transforms

$$F[f(\boldsymbol{\lambda})] = \hat{f}(\boldsymbol{\lambda}) = \sum_{i=1}^{n} f(i) \times U(i)$$

$$\hat{f}(\boldsymbol{\lambda}) = \mathbf{U}^{\mathrm{T}} f \Leftrightarrow f = \mathbf{U} \hat{f}(\boldsymbol{\lambda})$$

 $\hat{f}(\boldsymbol{\lambda})$ is the projection value of the Fourier basis **U**

Preliminary: Graph Convolution via Graph Fourier Transform

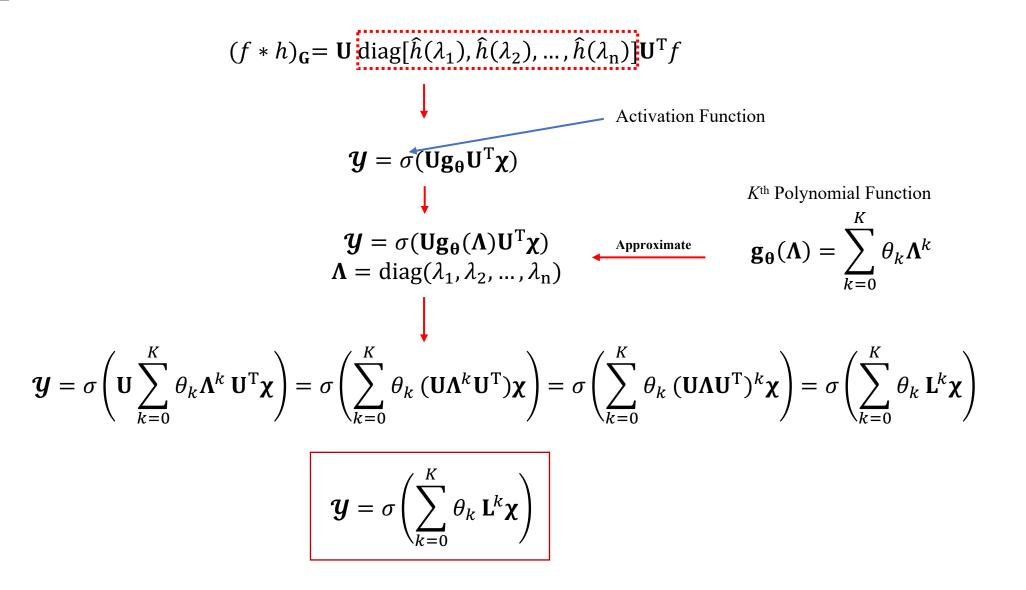
Notation:

Signal f

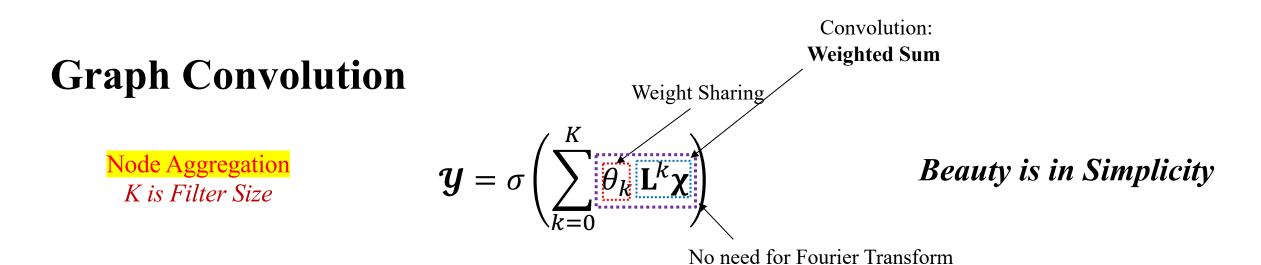
Signal *h*

F: Fourier Transforms

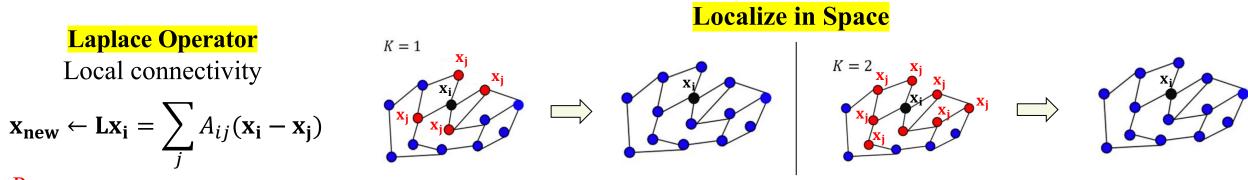
F⁻¹: Inverse Fourier Transforms


 $\hat{f}(w)$: F(f)

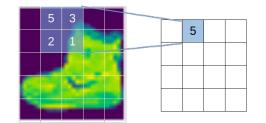
 $\hat{h}(w)$: F(h)


Note: Fourier Transforms of **Convolution in the spatial domain** \Leftrightarrow Point-wise Multiplication of two Fourier transformed signals $F((f * h)_{\mathbf{G}}) = \hat{f}(w) \times \hat{h}(w)$ Convolution $(f * h)_{\mathbf{G}} = \mathbf{F}^{-1}(\hat{f}(w) \times \hat{h}(w))$ Hadamard Product $\hat{f}(\lambda) = \mathbf{U}^{\mathrm{T}} f$ (Element-wise Multiplication) $(f * h)_{\mathbf{G}} = \mathbf{F}^{-1} \left((\mathbf{U}^{\mathrm{T}} f) \odot (\mathbf{U}^{\mathrm{T}} h) \right)$ $f = \mathbf{U}\hat{f}(\lambda)$ $(f * h)_{\mathbf{G}} = \mathbf{U} \left((\mathbf{U}^{\mathrm{T}} f) \odot (\mathbf{U}^{\mathrm{T}} h) \right)$ $[\mathbf{n} \times \mathbf{n}]$ $[\mathbf{n} \times \mathbf{n}]$ $[\mathbf{n} \times \mathbf{n}]$ $(f * h)_{\mathbf{G}} = \mathbf{U} \operatorname{diag}[\hat{h}(\lambda_{1}), \hat{h}(\lambda_{2}), ..., \hat{h}(\lambda_{n})]\mathbf{U}^{\mathrm{T}} f$ $[\mathbf{n} \times \mathbf{d}]$

Source: https://en.wikipedia.org/wiki/Convolution_theorem

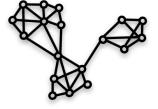

Graph Convolution

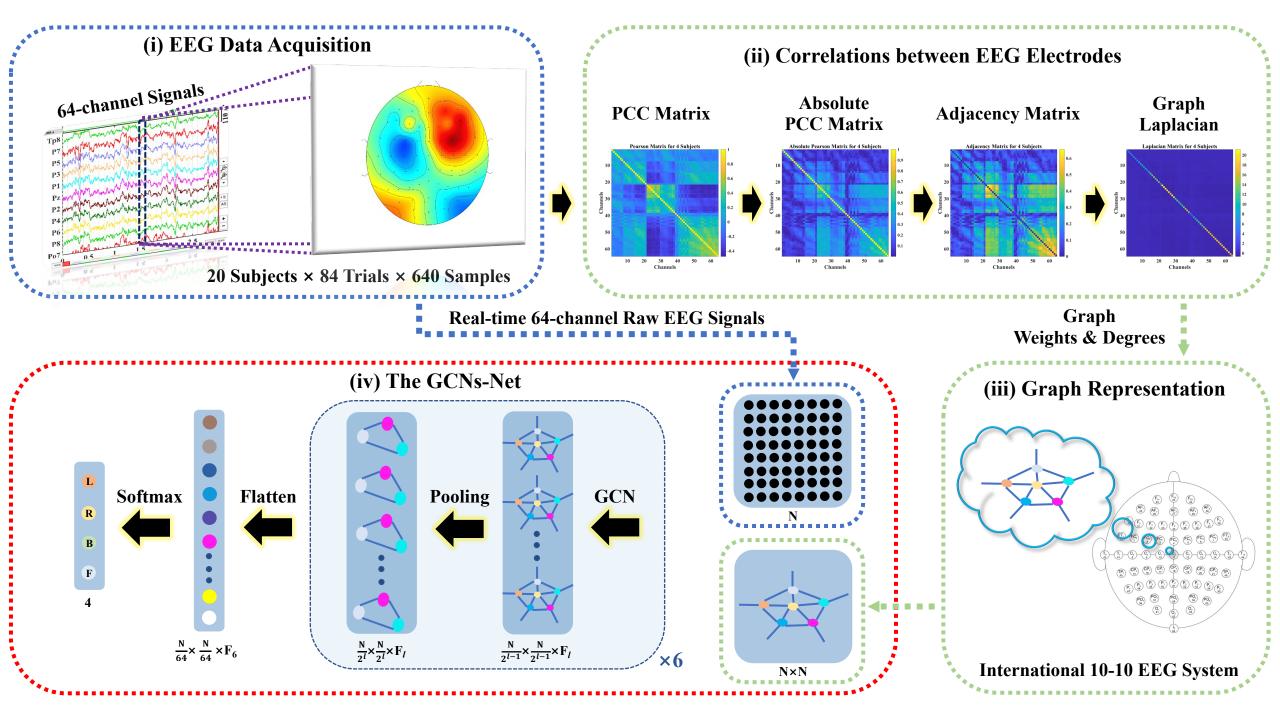
Credit: Defferrard et al., Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, In NeurIPS 2016.


GCN Key Idea: Use "edge information" to aggregate "node information" to generate a new "node representation"

- Pros:
- 1. No need for Spectral Decomposition of L
- 2. Less number of parameters (decrease model complexity) $\rightarrow K \ll N$
- Cons: Need to compute \mathbf{L}^k

Pooling on Graphs (Graph Coarsening)


- Traditional CNN doesn't need to consider neighbors after convolutions
 - [Euclidean Structure] The output Feature Maps are "regular"
 - The neighbor is "meaningful"
- GCNs need to consider neighbors after convolutions



- [Non-Euclidean Structure] The output graphs' nodes are not arranged in any meaningful way
- Use Graclus Multilevel Clustering Algorithm to find "meaningful" neighbors
- Minimize the *Local Normalized Cut* (a cluster grouping method)

$$-W_{ij}(\frac{1}{d_i} + \frac{1}{d_j})$$

- i and j denote node i and node j
- W_{ij} is the **learned weight** between node i and node j

Correlation among EEG electrodes Two Subjects: Subject 10 and 5

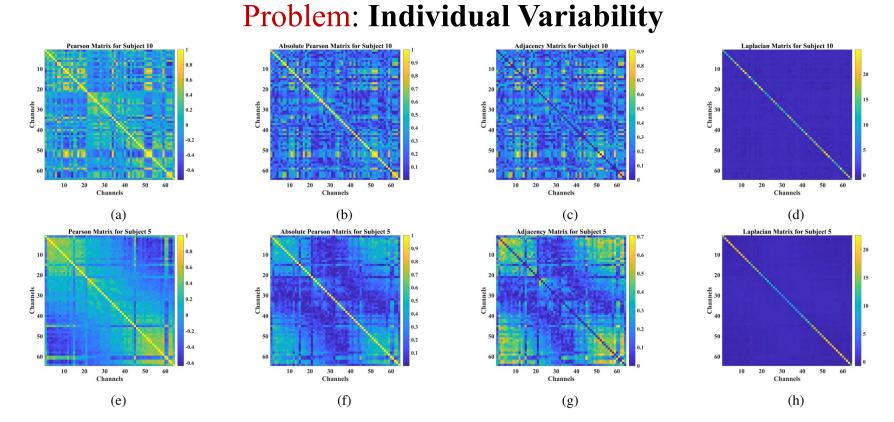


Fig. 6. PCC matrix, absolute PCC matrix, adjacency matrix, and graph Laplacian for Subjects 10 and 5 from the PhysioNet dataset. (a) PCC matrix for Subject 10. (b) Absolute PCC matrix for Subject 10. (c) Adjacency matrix for Subject 10. (d) Graph Laplacian for Subject 10. (e) PCC matrix for Subject 5. (f) Absolute PCC matrix for Subject 5. (h) Graph Laplacian for Subject 5.

Correlation among EEG electrodes 20 Subjects and 100 Subjects

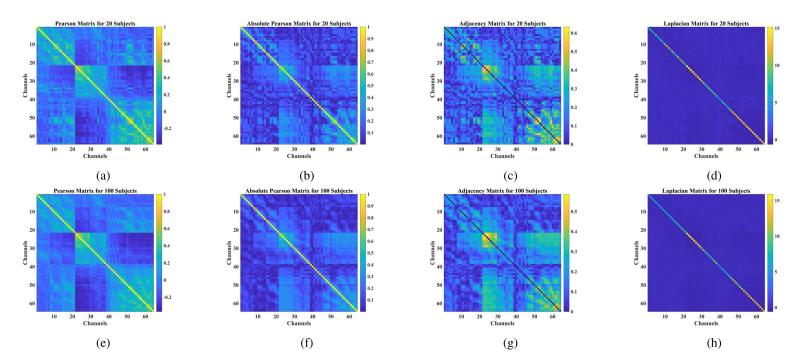


Fig. 2. PCC matrix, absolute PCC matrix, adjacency matrix, and graph Laplacian for 20 and 100 subjects, respectively, from the PhysioNet dataset. (a) PCC matrix for 20 subjects. (b) Absolute PCC matrix for 20 subjects. (c) Adjacency matrix for 20 subjects. (d) Graph Laplacian for 20 subjects. (e) PCC matrix for 100 subjects. (f) Absolute PCC matrix for 100 subjects. (g) Adjacency matrix for 100 subjects. (h) Graph Laplacian for 100 subjects.

Increasing the number of subjects alleviates individual variability

Model Design for 64-electrode EEG System

TABLE I

Layer	Туре	Maps	Size	Edges	Polynomial Order	Pooling Size	Activation	Weights	Bias
Softmax	Fully-connected	_	О	_	_	_	Softmax	$\frac{N}{64} \times \frac{N}{64} \times F_6 \times O$	О
Flatten	Flatten	—	$rac{N}{64} imes rac{N}{64} imes F_6$	—	—	—	—	—	—
P6	Max-pooling	F_6	$\frac{\mathrm{N}}{32}$	$\sum_{i=1}^{\frac{N}{32}-1} i$	_	2	_	_	_
C6	Convolution	F_6	$\frac{N}{32}$	$\sum_{i=1}^{\frac{1}{32}-1} i$	Κ	—	Softplus	$\mathrm{F}_5 \times \mathrm{F}_6 \times \mathrm{K}$	$rac{N}{32} imes F_6$
P5	Max-pooling	F_5	$\frac{N}{16}$	$\sum_{i=1}^{\frac{1}{16}-1} i$	_	2	—	_	—
C5	Convolution	F_5	$\frac{N}{16}$	$\sum_{i=1}^{\frac{N}{16}-1} i$	Κ	_	Softplus	$F_4 \times F_5 \times K$	$\frac{N}{16} \times F_5$
P4	Max-pooling	F_4	$\frac{N}{8}$	$\sum_{i=1}^{\frac{1}{8}-1} i$	_	2	_	_	_
C4	Convolution	F_4	$\frac{N}{8}$	$\sum_{i=1}^{rac{\mathrm{N}}{8}-1}i$	Κ	_	Softplus	$\mathrm{F}_3 \times \mathrm{F}_4 \times \mathrm{K}$	$\frac{N}{8} \times F_4$
P3	Max-pooling	F_3	$\frac{N}{4}$	$\sum_{i=1}^{rac{\mathrm{IN}}{4}-1}i$	—	2	—	_	—
C3	Convolution	F_3	$\frac{N}{4}$	$\sum_{i=1}^{rac{\mathrm{IN}}{4}-1} i$	Κ	—	Softplus	$F_2 \times F_3 \times K$	$\frac{N}{4} \times F_3$
P2	Max-pooling	F_2	$\frac{N}{2}$	$\sum_{i=1}^{\frac{1}{2}-1} i$	_	2	_	—	—
C2	Convolution	F_2	$\frac{N}{2}$	$\sum_{i=1}^{\frac{N}{2}-1} i$	Κ	_	Softplus	$F_1 \times F_2 \times K$	$\frac{N}{2} \times F_2$
P1	Max-pooling	F_1	${ar{ m N}}$	$\sum_{i=1}^{N-1} i$	_	2	_	—	-
C1	Convolution	\mathbf{F}_{1}	Ν	$\sum_{i=1}^{N-1} i$	Κ	—	Softplus	$1\times F_1\times K$	$\mathrm{N}\times\mathrm{F}_1$
Input	Input	1	Ν	$\sum_{i=1}^{N-1} i$	_	_	_	_	_

IMPLEMENTATION DETAILS OF THE PROPOSED GCNS-NET ON THE PHYSIONET DATASET

Model Optimization

- Ablation Study: Optimal Model Structure (64-electrode EEG System)
 - C6-P6-K2 with [16, 32, 64, 128, 256, 512] filters
- Gradient Iterative Solver: Adam Optimizer with Stochastic Gradient Descent (SGD) algorithm
 - Learning Rate: 0.01
 - Batch Size: 1,024

٠

• Activation Function: Softplus (Smooth Rectified Linear Unit)

 $F(\mathbf{x}) = \log(1 + e^{\mathbf{x}})$

• **Model Output**: Softmax: y are labels, \hat{y} are the final output tasks

$$\widehat{y}_i = \operatorname{argmax}\left(\frac{\mathrm{e}^{y_i}}{\sum_{i=1}^4 \mathrm{e}^{y_i}}\right)$$

Loss Function: Cross-entropy Loss with L2 regularization

$$\text{Loss} = -\sum_{i=1}^{4} y_i \log(\widehat{y_i}) + \lambda \left(\sum_{j=1}^{n} w_j^2 + b_j^2\right)$$

 $\lambda = 1 \times 10^{-6}$ is the coefficient of the L2 regularization.

Ablation Study

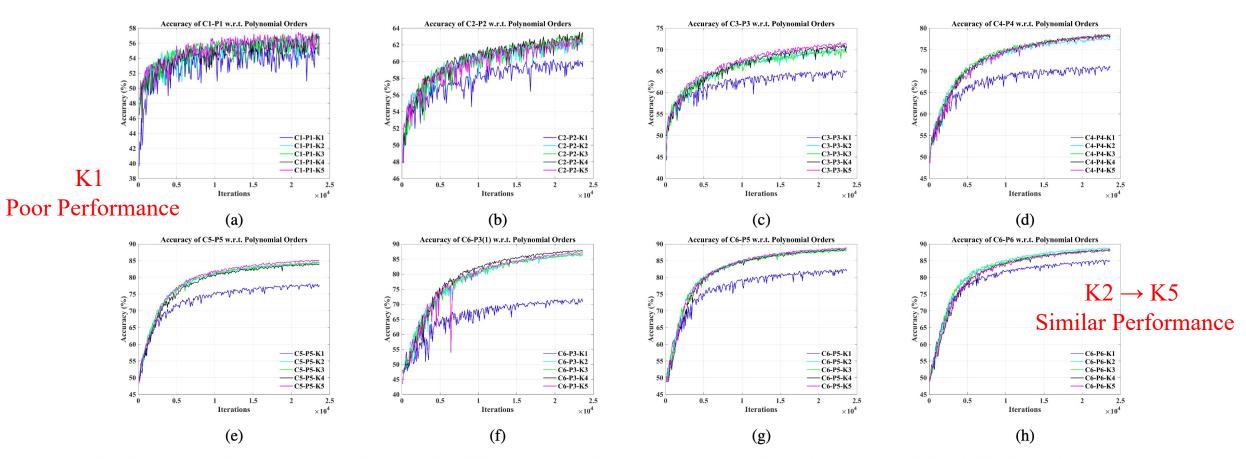


Fig. 3. Accuracy of some selected models regarding different polynomial approximation order. The models are selected from Table II. (a) Accuracy of the model C1-P1 (model 1). (b) Accuracy of the model C2-P2 (model 3). (c) Accuracy of the model C3-P3 (model 6). (d) Accuracy of the model C4-P4 (model 10). (e) Accuracy of the model C5-P5 (model 14). (f) Accuracy of the model C6-P3 (model 16). (g) Accuracy of the model C6-P5 (model 19). (h) Accuracy of the model C6-P6 (model 20).

Experimental Results Groupwise Prediction and Subject-specific Adaptation

TABLE IV

PERFORMANCE COMPARISONS ON THE PHYSIONET DATASET

Related Work	Max. Accuracy	Avg. Accuracy	<i>p</i> -value	Level	Approach	Num. of Subjects
Does at al. (2018) [22]	_	58.58%	_	Group	CNNs	105
Dose et al. (2018) [22]	80.38%	68.51%	< 0.05	Subject	CININS	1
Ma et al. (2018) [60]	82.65%	68.20%	_	Group	RNNs	12
$II_{00} \approx \pi l_{0}(2020)$ [20]	94.50%	_		Group	ESI-CNNs	10
Hou et al. (2020) [20]	96.00%	_	> 0.05	Subject	ESI-CININS	1
How at al. (2022) [24]	94.64%	—	_	Group	BiLSTM-GCN	20
Hou et al. (2022) [34]	98.81%	95.48%	> 0.05	Subject		1
I_{10} at al. (2022) [40]	94.16%	93.78%	_	Group	Craph DasNat	20
Jia et al. (2022) [40]	98.08%	94.18%	> 0.05	Subject	Graph ResNet	1
	89.39% 88.57%		Chan			20
Author	88.14%	_	_	Group	GCNs-Net	100
	98.72%	93.06%		Subject		1

Note: p-value $< 0.05 \rightarrow$ Statistically Significant Difference

Takeaways and Future Work

✓ Graph Representation

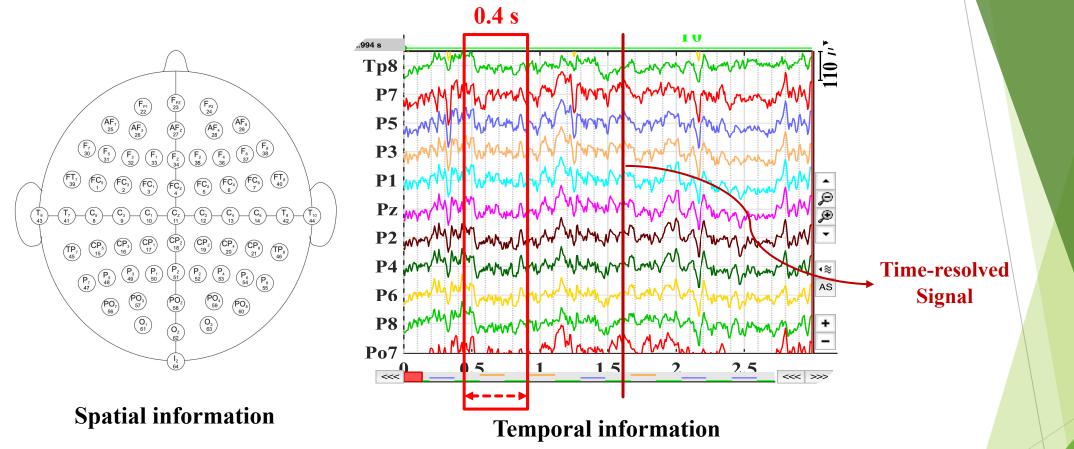
Graph Representation Learning to deeply extract Network Patterns of Brain Dynamics for EEG classification.

✓ Model Converge

Converge for both <u>Personalized and Groupwise Predictions</u>, indicating that the GCNs-Net is able to build a generalized representation of EEG time-series against both <u>Personalized and Groupwise Variations</u>.

✓ Future Work

Model EEG signals as Dynamic Graphs and process them via Dynamic Graph Representation Learning.

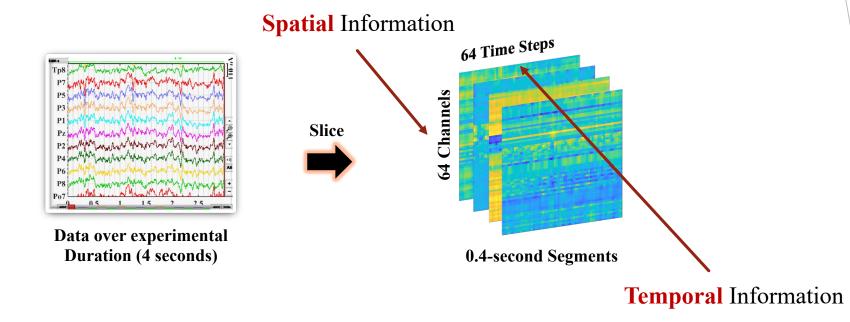

Deep Feature Mining via Attention-based BiLSTM-GCN for Human Motor Imagery Recognition

Yimin Hou¹, Shuyue Jia^{1,2*}, Xiangmin Lun¹, Shu Zhang³, Tao Chen¹, Fang Wang¹, and Jinglei Lv⁴

¹ School of Automation Engineering, Northeast Electric Power University
 ² Department of Computer Science, City University of Hong Kong
 ³ School of Computer Science, Northwestern Polytechnical University
 ⁴ School of Biomedical Engineering and Brain and Mind Center, The University of Sydney

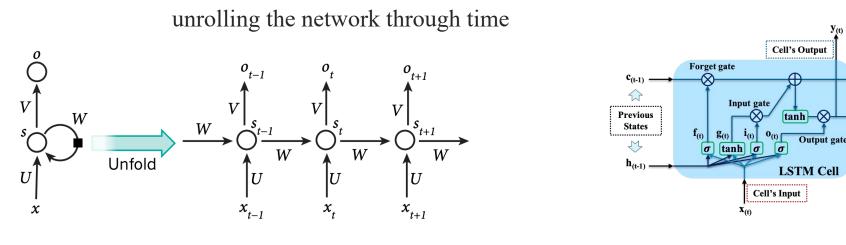
EEG Deep Learning Library: https://github.com/SuperBruceJia/EEG-DL

One Problem of the GCNs-Net

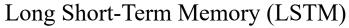

 $\checkmark \quad \text{GCNs-Net is based on Time-resolved Signal} \rightarrow \text{doesn't consider Temporal Information}$

Motivation:

- [Spatial-Temporal Analysis] Consider Temporal and Spatial Information from EEG signals
- ✓ [Responsive] Maintain High Responding Time


Image Credit: The PhysioNet Dataset.

64-channel Raw EEG Signals Acquisition

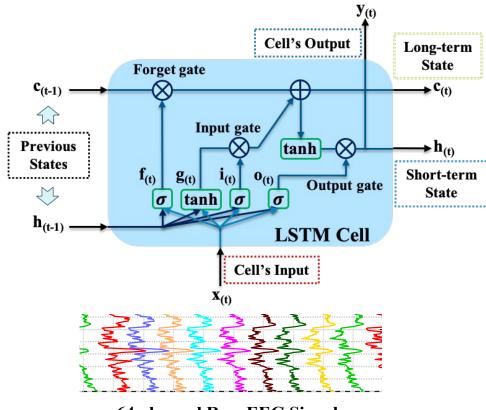


- ✓ 4-s Signals (experimental duration): **0.4-s segments** over time
- ✓ Each Segment: **64 channels** × **64 time steps**
- Pre-processed Data: Temporal Information + Spatial Information

Temporal Information Extraction

Recurrent Neural Network (RNN)

Long-term State


Short-term

State

- ✓ Designed for order-mattered sequential data, *e.g.*, time series
- ✓ The learned features at *time step t* are affected by \mathbf{x}_t and $\mathbf{x}_{t-1} \rightarrow \textbf{continuly learn}$ from time series
- ✓ LSTM: better capture **long-range sequence dependencies**
- ✓ Gated Recurrent Units (GRU): lightweight architecture with comparable performance

Image Credit: LeCun et al., Deep Learning, In Nature.

Long Short-term Memory (LSTM)

64-channel Raw EEG Signals at Time Step x_(t)

- **RNN**: Vanishing Gradient problem
- **LSTM**: Capture Long-range Dependencies

by the long-term state path $\mathbf{c}_{t-1} \rightarrow \mathbf{c}_t$ (improve the gradient flow)

- Gate: control information flow
- **Input Gate**: store \mathbf{x}_t and control \mathbf{c}_t 's input
- **Forget Gate**: control **c**_{t-1}
- **Output Gate**: control c_t 's output
 - \rightarrow short-term state **h**_t (**Cell's Output**)
- ✓ More parameters to store information
- ✓ Bidirectional:
 - (1) $\mathbf{x}_1 \rightarrow \mathbf{x}_t$
 - (2) $\mathbf{x}_t \rightarrow \mathbf{x}_1$
- ✓ **GRU**: Update Gate, Reset Gate; hidden state

Attention Mechanism

Signals or Outputs

 \checkmark

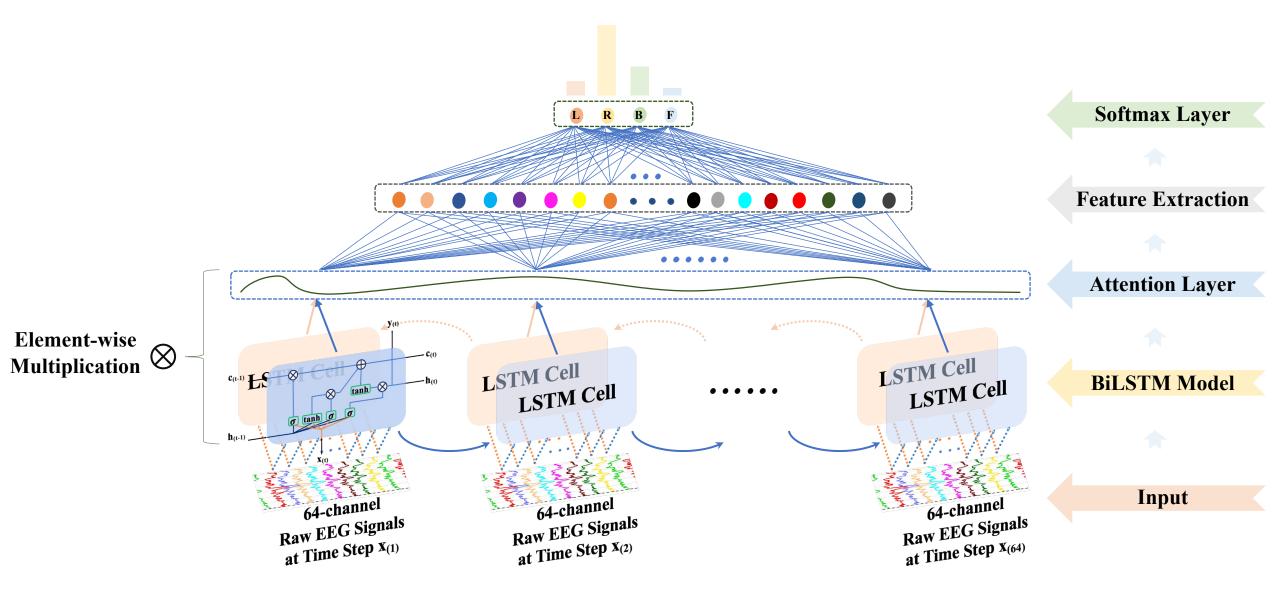
Equally treated/contributed

VS.

<u>Differently</u> treated/contributed <u>with preference/importance</u>

FC Layer
$$\mathbf{U}_{t} = \tanh(\mathbf{W}_{w}\mathbf{y}_{t} + \mathbf{b}_{w})$$

Attentional Weights


> Weighted Sum

$$\widehat{\mathbf{U}}_t = \sum_t \boldsymbol{\alpha}_t \mathbf{y}_t$$

 $\boldsymbol{\alpha}_{t} = \frac{\exp(\mathbf{U}_{t}^{\mathrm{T}}\mathbf{W}_{U})}{\sum_{t}\exp(\mathbf{U}_{t}^{\mathrm{T}}\mathbf{W}_{U})}$

Image Credit: Prof. Bolei Zhou.

Attention-based Bidirectional Long Short-term Memory (Bi-LSTM)

Model Design Ablation Study

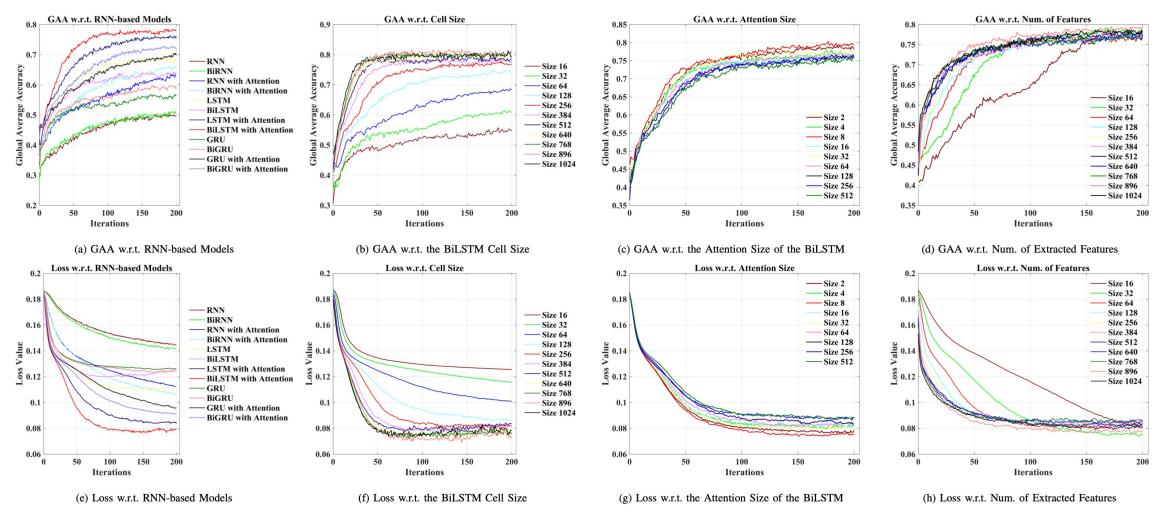
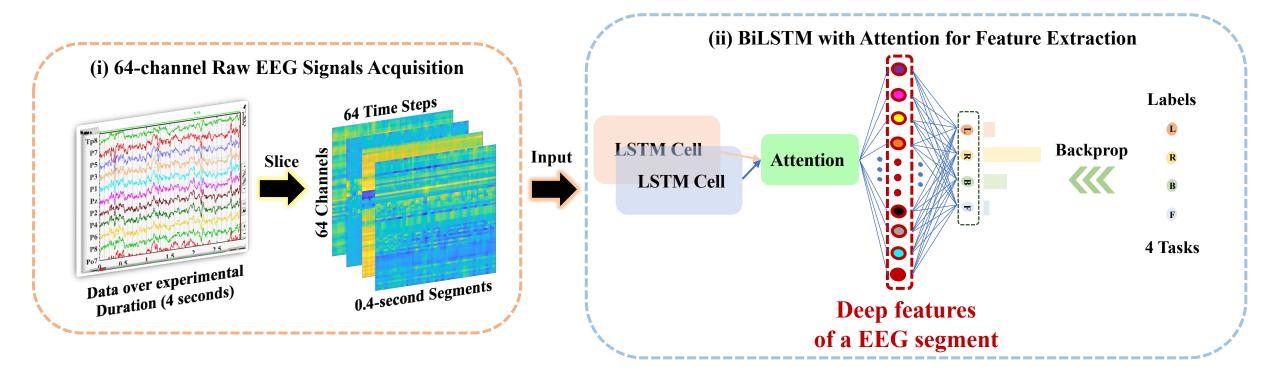
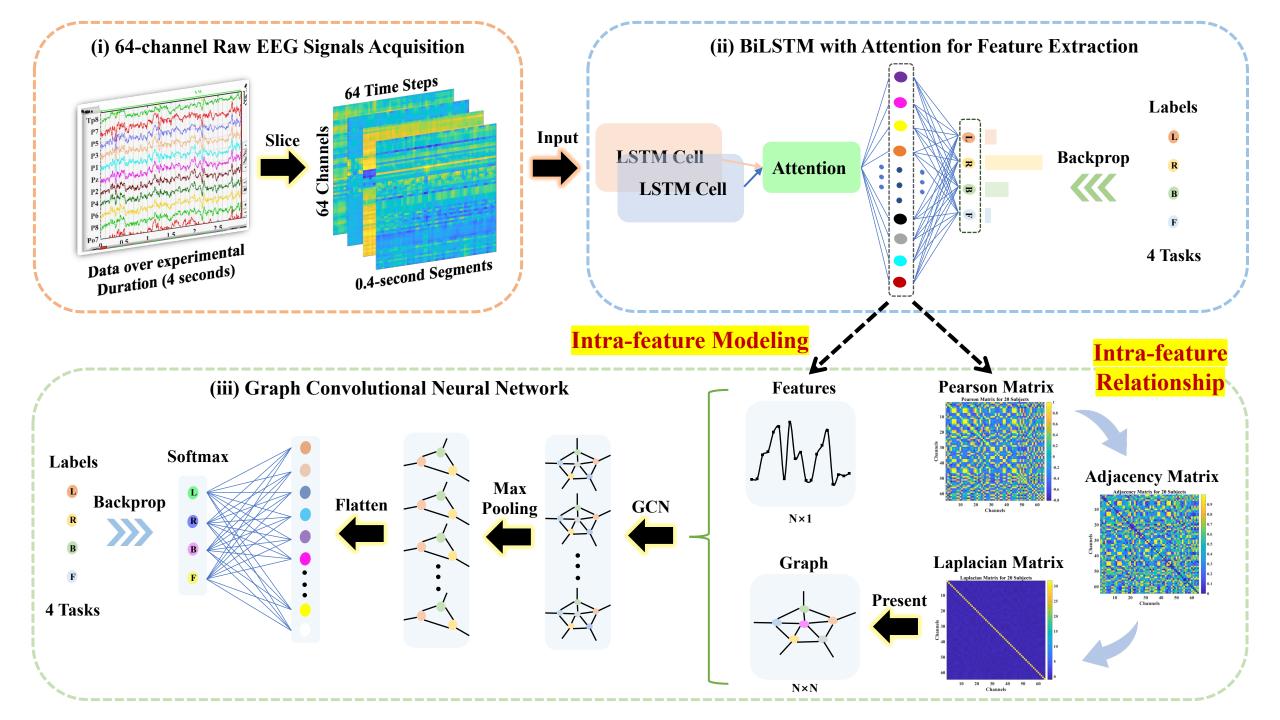




Fig. 3: Models and Hyperparameters Comparison w.r.t. the RNN-based Methods for Feature Extraction

Topological Structure of Features

✓ Deep Feature Mining → Intra-feature Relationship → Intra-feature Modeling

Topological Structure of Features

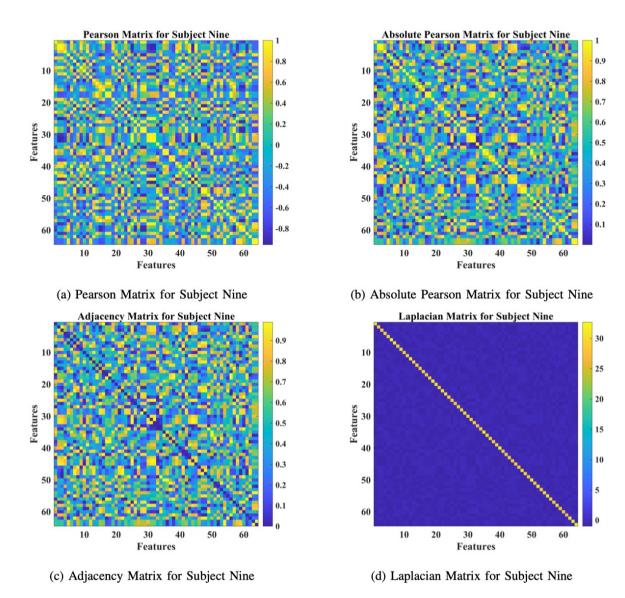


Fig. 4: The Pearson, Absolute Pearson, Adjacency, and Laplacian Matrices for Subject Nine.

Experimental Results - Groupwise Prediction

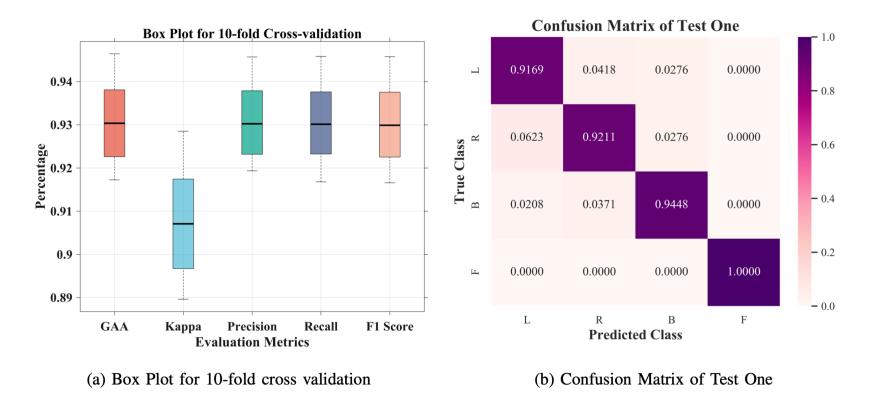


Fig. 5: Box plot and confusion matrix for 10-fold cross validation.

Note:

- (1) Box Plot (Maximum Score, Upper Quartile, Median, Lower Quartile, and Minimum Score)
- (2) Confusion Matrix: TP, TN, FP, and FN

Experimental Results - Subject-Specific Adaptation

No. of Subject	GAA	Карра	Precision	Recall	F1 Score
1	94.05%	92.06%	94.20%	94.32%	94.16%
2	96.43%	95.19%	96.06%	96.06%	96.06%
3	97.62%	96.79%	97.33%	97.08%	97.18%
4	90.48%	87.34%	91.30%	91.11%	90.42%
5	95.24%	93.61%	95.96%	95.06%	95.38%
6	94.05%	92.02%	93.40%	94.96%	93.66%
7	98.81%	98.40%	98.81%	99.07%	98.92%
8	95.24%	93.60%	95.39%	95.04%	95.19%
9	98.81%	98.39%	99.11%	98.68%	98.87%
10	94.05%	91.98%	93.39%	94.70%	93.61%
Average	95.48%	93.94%	95.50%	95.61%	95.35%

TABLE II: Subject-level Evaluation

TABLE III: Current studies comparison on subject-level prediction

Related Work	Max. GAA	Approach	Database
Ortiz-Echeverri et al. (2019)	94.66%	Sorted-fast ICA-CWT + CNNs	
Sadiq <i>et al.</i> (2019)	95.20%	EWT + LS-SVM	BCI Competition IV-a Dataset
Taran <i>et al.</i> (2018)	96.89%	TQWT + LS-SVM	
Zhang <i>et al.</i> (2019)	83.00%	CNNs-LSTM	
Ji et al. (2019)	95.10%	SVM	BCI Competition IV-2a Dataset
Amin et al. (2019)	95.40%	MCNNs	-
Dose et al. (2018)	68.51%	CNNs	
Hou et al. (2019)	96.00%	ESI + CNNs	Physionet Database
This work	98.81%	Attention-based BiLSTM-GCN	·

Takeaways and Future Work

✓ Spatial-Temporal Analysis

(1) Converge to both **Subject-level and Groupwise Predictions** and handle **Individual Variability**.

(2) The 0.4-s sample size <u>Time-Resolved Solution</u> toward fast response.

✓ Deep Feature Mining

- (1) ↑ Highest Accuracy
- (2) Advance <u>Clinical Translation</u> of EEG-based BCI technology to meet diverse demands, such as those of paralyzed patients.

✓ Future Work

Long-range Dependencies among intra-subject or inter-subject EEG signals can be modeled via Non-local Modeling, Self-attention Mechanism, Transformer, and AI foundation Models.

Thank you!

Any question?

Acknowledgment: Dr. Zhijian Hou and Dr. Dingquan Li.