

No-reference Image Quality Assessment via Non-local Dependency Modeling

Shuyue Jia¹, Baoliang Chen¹, Dingquan Li², Shiqi Wang¹

¹City University of Hong Kong ²Peng Cheng Laboratory

Full / Reduced / No reference Image Quality Assessment (IQA)

Distorted Image

香港城市大學 City University of Hong Kong

Recent Progress on No-reference IQA

weighted

Credit:

[1] Bosse *et al.*, Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment, In TIP 2018

[2] Liu et al., RankIQA: Learning from Rankings for No-reference Image Quality Assessment, In ICCV 2017

[3] Golestaneh et al., No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency, In WACV 2022

Challenges

Input Patch	Convolutional Neural Networks	(CNNs)
-------------	-------------------------------	--------

• Convolutional Neural Networks (Local Modeling):

1. Translation invariance (Pooling)

2. Translation equivalence (Convolution)

3. Fewer trainable parameters (Weight sharing)

• Limitations of the local-modeling method:

1. Small-sized receptive field \rightarrow Extracted features are too local

2. Parameters fixed across the whole image \rightarrow Image content is equally treated

3. Lack of geometric and relational dependency modeling \rightarrow Missing complex relations and layouts

Motivation of NLNet

Local Feature Extraction is critical

Non-local Dependency Learned by the NLNet

1. HVS is adaptive to the local content:

- ightarrow Local appearance artifacts affect the overall quality
- 2. HVS perceives image quality with long dependency constructed among different regions
 - \rightarrow Non-local feature extraction for long-range dependency modeling

NLNet Architecture

(i) Image Preprocessing

Image Credit: TID2013 Database

SLIC Superpixel Segmentation

Superpixel versus Square Patch

- Adherence to boundaries and visually meaningful
- 2. Accurate feature extraction

(a) The superpixel segmentation of the parrot image distorted by the Gaussian blur.

(b) The square patch representation of the parrot image distorted by the Gaussian blur.

(c) The superpixel segmentation of the parrot image distorted by the white Gaussian noise.

(d) The square patch representation of the parrot image distorted by the white Gaussian noise.

CityU 香港城市大學 CityUniversity of Hong Kong

Experimental Setup

- Dataset:
 - LIVE, CSIQ, TID2013
- Evaluation metrics:
 - SRCC (Spearman Rank-order Correlation Coefficient)
 - PLCC (Pearson Linear Correlation Coefficient)
- Experimental setting:
 - Intra-database Experiments:

 \rightarrow 60% training, 20% validation, and 20% testing, with random seeds from 1 to 10

• Cross-database Experiments:

 \rightarrow One database as the training set, and the other databases as testing set

 \rightarrow Report the last epoch's performance

TABLE IBRIEF SUMMARY OF THE LIVE, CSIQ, AND TID2013 DATABASES

Database	LIVE	CSIQ	TID2013
Number of Reference Images	29	30	25
Number of Images	779	866	3,000
Number of Distortion Types	5	6	24
Number of Distortion Levels	$5\sim 8$	$3\sim 5$	5
Annotation	DMOS	DMOS	MOS
Range	[0, 100]	[0, 1]	[0, 9]

Experimental Results

TABLE II					
PERFORMANCE COMPARISONS ON THE LIVE, CSIQ, AND TID2013					
DATABASES					

Mathad	LIVE		CSIQ		TID2013	
Method	SRCC	PLCC	SRCC	PLCC	SRCC	PLCC
BRISQUE (2012) [3]	0.939	0.935	0.746	0.829	0.604	0.694
CORNIA (2012) [6]	0.947	0.950	0.678	0.776	0.678	0.768
M3 (2015) [40]	0.951	0.950	0.795	0.839	0.689	0.771
HOSA (2016) [7]	0.946	0.947	0.741	0.823	0.735	0.815
FRIQUEE (2017) [41]	0.940	0.944	0.835	0.874	0.68	0.753
DIQaM-NR (2018) [42]	0.960	0.972	-	-	0.835	0.855
DB-CNN (2020) [11]	0.968	0.971	0.946	0.959	0.816	0.865
HyperIQA (2020) [12]	0.962	0.966	0.923	0.942	0.729	0.775
GraphIQA (2022) [14]	0.968	0.970	0.920	0.938	-	-
TReS (2022) [15]	0.969	0.968	0.922	0.942	0.863	0.883
NLNet (Proposed)	0.962	0.963	0.941	0.958	0.856	0.880

TABLE III CROSS-DATABASE PERFORMANCE COMPARISONS

Training	LIVE		CSIQ		TID2013	
Testing	CSIQ	TID2013	LIVE	TID2013	LIVE	CSIQ
BRISQUE (2012) [3]	0.562	0.358	0.847	0.454	0.790	0.590
CORNIA (2012) [6]	0.649	0.360	0.853	0.312	0.846	0.672
M3 (2015) [40]	0.621	0.344	0.797	0.328	0.873	0.605
HOSA (2016) [7]	0.594	0.361	0.773	0.329	0.846	0.612
FRIQUEE (2017) [41]	0.722	0.461	0.879	0.463	0.755	0.635
DIQaM-NR (2018) [42]	0.681	0.392	-	-	-	0.717
DB-CNN (2020) [11]	0.758	0.524	0.877	0.540	0.891	0.807
HyperIQA (2020) [12]	0.697	0.538	0.905	0.554	0.839	0.543
NLNet (Proposed)	0.771	0.497	0.923	0.516	0.895	0.730

- 1. Competitive performances compared with those 80% train and 20% test methods.
- 2. Superior cross-database performances.

THANK YOU!

Code: https://github.com/SuperBruceJia/NLNet-IQA

Acknowledgement:

Helpful discussions with Dr. Xuhao Jiang, Dr. Diqi Chen, and Dr. Zhijian Hou.