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Recent	Progress	on	No-reference	IQA

CNN-based	Methods [1]

Ranking-based	Methods [2]

Transformer-based	Methods [3]

Credit: 
[1] Bosse et al., Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment, In TIP 2018
[2] Liu et al., RankIQA: Learning from Rankings for No-reference Image Quality Assessment, In ICCV 2017
[3] Golestaneh et al., No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency, In WACV 2022



Challenges

• Convolutional	Neural	Networks (Local Modeling):

1. Translation	invariance (Pooling)

2. Translation	equivalence	(Convolution)

3. Fewer	trainable	parameters (Weight	sharing)

• Limitations of	the	local-modeling	method:

1. Small-sized	receptive	field →	Extracted	features	are	too	local

2. Parameters	fixed	across	the	whole	image	→	Image content	is	equally	treated

3. Lack	of	geometric	and	relational	dependency	modeling →	Missing complex	relations	and	layouts

Convolutional Neural Networks (CNNs)Input Patch
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Motivation	of	NLNet

1. HVS is adaptive to the local content:

→ Local appearance artifacts affect the overall quality

2. HVS perceives image quality with long dependency constructed among different regions

→ Non-local feature extraction for long-range dependency modeling

Non-local Dependency
Learned by the NLNet

Local Feature Extraction is critical

Image Credit: TID2013 and LIVEC Databases



(ii) Graph Neural Network – Non-Local Modeling Method

(iv) Feature Mean & Std Fusion and Quality Prediction
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(iii) Pre-trained VGGNet-16 – Local Modeling Method
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(i) Image Preprocessing
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SLIC Superpixel Segmentation

Superpixel versus Square	Patch

1. Adherence	to	boundaries	and	

visually	meaningful

2. Accurate	feature	extraction

Image Credit: TID2013 Database



Experimental Setup
• Dataset:

• LIVE, CSIQ, TID2013

• Evaluation metrics:

• SRCC (Spearman Rank-order Correlation Coefficient)

• PLCC (Pearson Linear Correlation Coefficient)

• Experimental setting:

• Intra-database Experiments:

→ 60% training, 20% validation, and 20% testing, with random seeds from 1 to 10 

• Cross-database Experiments:

→ One database as the training set, and the other databases as testing set

→ Report the last epoch’s performance



Experimental	Results
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1. Competitive performances compared with those 80% train and 20% test methods.

2. Superior cross-database performances.



THANK	YOU!

Code: https://github.com/SuperBruceJia/NLNet-IQA
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