

A Short Survey of Recent Advances in Graph and Subgraph Matching

Shuyue Jia July 2020

Learning Objectives

- **GM**: Construct vertex corresponding, which maximize affinities
 - Object Function ← Lawler's QAP
 - Optimization Problem ← Maximize Affinity Score
- SubGM: Find all subgraphs in the database graph
 - Making Index ← Dataset Preprocessing
 - Query processing \leftarrow GM
- Current Hotspots
 - Multi-graph Matching
 - Incremental GM
 - Deep Learning based GM/SubGM
- Applications:
 - *Effective and Efficient SubGM for bio networks*
 - Online Incremental Learning

Background:

- 1. Subgraph Matching for (large) biological networks/graphs
- 2. Maximum Common Subgraphs (MCS)

Survey:

- 1. Most (Inexact) Graph Matching
- 2. Few Subgraph Matching

Graph Matching

Definitions

- Model vertex corresponding to maximize object function (e.g., affinity score, distance cost)
- Properties: isometric (等距), isomorphisms (同构), homeomorphisms (同胚)
- Two Steps:
 - 1. Build vertex corresponding (Assignment Matrix) and object function
 - 2. Optimize the Assignment Matrix to maximize/minimize object function

Measurements

- Which metrics we aim to optimize \rightarrow Assignment Matrix
- How we define our object function \rightarrow Lawler's QAP (Most commonly used affinity score)

Keywords

- Graph Matching, Subgraph Matching,
- Multi-graph Matching, Incremental Matching, Higher-order Graph Matching

Usage Scenarios

Graphs/Subgraphs Matching to (Multiple/Large) Domain Database Graphs

- Subgraphs \rightarrow (Large, >10³ vertexes) domain Knowledge Graphs
- Physical Science (Chemistry, Fluid Dynamics, Astronomy, structural mechanics, and ecosystem modeling)
- Life Science (Biological Networks, protein-protein interaction networks, gene regulatory networks, metabolic networks, brain connectivity from alignment-free functional magnetic resonance imaging (fMRI) data)

Computer Science Scenarios ← *A lot of scenarios*

- **Combinatorics** ← Quadratic Assignment Problem (QAP) ← Graph Matching
- Pattern Recognition, Multimedia, Computer Vision
- Image registration, understanding, extrapolation and recognition, object recognition and tracking, scene understanding and parsing, weak-perspective 3-D reconstruction, action recognition, robotics, video surveillance and person re-identification.

Current related works

Inexact Matching	
- Tree Search -	Tsai79[154], Ghahraman80[59], Shapiro81[136], Sanfeliu83[132], Tsai83[155], Eshera84[44, 45], Shapiro85[137], Wong90[172], Dumay92[40], Rocha94[128], Shasha94[138], Wang95[164], Cordella96[30], Allen97[2], Cordella97[31], Oflazer97 [113], Haris99[65], Serratosa99[135], Berretti00[9,10], Serratosa00[134], Berretti01[11], Llados01[95], Valiente01[158], Gregory02[63], Fernàndez01[48]
Continuous Optimization	Fisher73[51], Kittler89[80], Almohamad93[3], Christamas95[27], Pelillo95 [119], Pelillo95 [120], Gold96[61], Rangarajan96[127], Bomze97[12], Wilson97[167], Pelillo98 [121], Branca99[13], Huet99[71], Medasani99[105], Pelillo99[122, 123], Myers00[112], Luo01[98], Medasani01[104], Torsello01[151], Pellillo02[124], Van Wyk02 [159, 160]
- Spectral Methods -	Umeyama88[157], Carcassoni01[21], Kosinov01[83], Xu01[173], Shokoufandeh01[144]
Other Techniques	Kitchen79[79], Gendreau93[58], Wang94[163], Liu95[93], Depiero96[37], Shoukry96[145], Wang97[166], El-Sonbaty98[42], Messmer98[108], Suganthan98[149], Fuchs99[57], Ozer99[115], Perchant99[125], Williams99[168], Baeza-Yates00[5], Fuchs00[56], Jagota00[74], Liu00[92], Suganthan00[146], De Mauro01[34], Khoo01[78], Hlaoui02[66]

Current related works

Summary

Year	Author	Institution	Title	Scenario	Metrics	Model	Result
2016	Junchi Yan (严骏驰)	上海交大	A Short Survey of Recent Advances in Graph Matching	Multiple	-	-	-
2018 2015	Junchi Yan (严骏驰)	上海交大	(中文期刊) 计算机视觉中 图匹配研究进展: 从二图 匹配迈向多图匹配 (博士论文) 图匹配问题的 研究和算法设计	Multiple	-	-	-
2004	Donatello Conte, Pasquale Foggia, and et al.	萨勒诺大学	Thirty Years Of Graph Matching In Pattern Recognition	Multiple	-	-	-
2018	Andrei Zanfir and Cristian Sminchisescu	隆德大学	Deep Learning of Graph Matching	Multiple, Computer Vision in particular	PCK: Percentage of Correct Keypoints PCK@10 pixels, PCK@0.05, PCK@0.1	Neural Network (CNNs)	MPI-Sintel: PCK@10 pixels: 92.6% CUB: PCK@0.05: 0.86 PASCAL VOC keypoints: PCK@0.1 (class average): 40.6
2009	Shijie Zhang, Shirong Li, and Jiong Yang	凯斯西储大 学	GADDI: Distance Index based Subgraph Matching in Biological Networks	Biological Networks	Accuracy, Precision, Recall, Query Time	Distance Index based method	-

To do

- Continue to survey *subgraph matching*, especially those methods for biological networks
- Try to reproduce "Deep Learning of Graph Matching" and apply the algorithm into biological networks (graph matching)
 - See whether the method is suitable for *subgraph matching*
- Get engaged with knowledge graph and corresponding tasks.

M. C. S. M. N.

111111

www.philips.com

Thanks and have a nice day!

TITT

TTT

sca aonainchtiu

innovation ++ you