

#### GCNs-Net: A Graph Convolutional Neural Network Approach for

Decoding Time-resolved EEG Motor Imagery Signals

and the second

School of Automation Engineering, NEEPU, China

Shuyue Jia shuyuej@ieee.org Supervisor: Yimin Hou

### Research Background



- **BCI**: connects the brain with machines, **acquires and analyzes brain signals** regarding actual or imagery tasks, and then **commands machines**.
- **Significance**: help the disabled (e.g., strokes) and understand our brains.
- Types of BCI:
  - Electroencephalography (EEG)
  - Magnetoencephalography (MEG)
  - Functional Magnetic Resonance Imaging (fMRI)
  - Invasive BCI Technologies (e.g., Neuralink)
  - etc.
- **Reasons for using EEG for this project:** 
  - Non-invasiveness
  - High Temporal Resolution
  - Portability
  - Inexpensive Equipment
  - etc.
  - Related Applications: Wheelchair (Nature Machine Intelligence, 2019), Spoken Sentences (Nature 2019)
- **Specific Task:** EEG Motor Imagery Tasks Classification (e.g., control a wheelchair through only brain signals)

Potentially have a

broad market.

• **Our Goal**: develop **EEG-based BCI applications** that could potentially be used to improve the current stroke rehabilitation strategies.







# Difficulties in dealing with EEG Signals

#### • Individual Variability -> Lower Classification Accuracy

- Low Signal-noise ratio
- Different brain electrical conductivity ← different anatomical structure of brain
- Electrodes' position error
- etc.

#### • Slow Real-time Responding → Hard to develop Real-life Applications

- Trial-level prediction (e.g., 4 s) (most literature)
- Window-level prediction (e.g., 0.4 s)
- Time-resolved prediction (e.g., 6.25 ms) (Our Work)

#### • Low Group-level Accuracy → Hard to develop Applications for a Group of People

- Subject-level prediction (most literature) (Our Work)
- Group-level prediction (Our Work)

# Intuition & Motivation





- Most recent published literature in the field of EEG (MI) introduced CNN-based approaches.
- Check <u>our previous work</u> (*Journal of Neural Engineering, SCI, IF=4.551*), which used CNN method and achieved competitive results (96% accuracy at the subject level, and 94.50% at the group level (10 subjects)).
- Local connectivity, weights sharing, translation invariance, hierarchical, low dimensionality, etc.
- **Implemented on the Euclidean-structured data** (e.g. Image, voice, natural languages)
- Neuroscience research has increasingly emphasized **Brain Network Dynamics**.

| R  | 000 | 00  | 00 | 000 |
|----|-----|-----|----|-----|
| 15 | 200 | 200 | 20 | 200 |
| B  | òŏŏ | ŏŏ  | ŏŏ | ŏŏŏ |
| 18 | 200 | 80  | 88 | 888 |
| 12 | 200 | 200 | 88 | 888 |
| R  | òòò | ŏŏ  | õõ | 000 |

- The functional topological connectivity of EEG electrodes  $\rightarrow$  Graph instead of Euclidean structure



Traditional CNN-based approaches:





#### **Our Question:**

Can we implement CNNs on graphs directly?



# Can we use Traditional CNNs on graphs directly?

- Traditional CNNs **cannot** process graphs directly:
  - Graphs are irregular (1. unordered, 2. vary in size)
  - $\rightarrow$  Convolution **cannot** keep **translation invariance** on the non-Euclidean signals
- Can we implement CNNs on Graphs? → Graph Convolutional Neural Networks (GCNs / Graph CNN)
  - Can process Graph-structured Signals directly
  - Consider the relationship properties (e.g., correlations) between nodes
  - Consider the functional topological relationships of EEG electrodes



#### **Our Question:**

How to implement CNNs on graphs? (How to implement GCNs?)

# Our presented GCNs-Net for EEG Signals Classification





Codes available at https://github.com/SuperBruceJia/EEG-DL.

#### **Benchmark Dataset Description**



- The PhysioNet Dataset (EEG Motor Movement/Imagery Dataset)
- 64-electrode EEG (International 10-10 system, excluding electrodes Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9, and P10)



- 109 subjects (largest number of participants in the field of EEG MI)
- 4-class EEG Motor Imagery Classification
  - Imagining left fist, right fist, both fists, and both feet
- For each subject, 3 runs, 7 trials, 4 classes  $\rightarrow$  84 trials in total
- For each trial, 4 seconds experimental duration, 160 Hz Sampling Rate  $\rightarrow$  640 Time Points
- We applied Time-resolved Method → Real-time Applications:
  - Total samples per subject: 3 runs  $\times$  7 trials  $\times$  4 classes  $\times$  4 seconds  $\times$  160 Hz = 53,760 samples
  - Randomly shuffled, 90% as the training set and the left 10% as the test set.

### Graph Representation: Laplacian Matrix in Graph Theory

- Undirected and Weighted Graph: G = {V, E, A}
  - V: nodes, |V| = N
  - E: edges that connected nodes
  - A: weights / correlations between nodes
- Correlations representation: Pearson Matrix
  - Measure the linear correlations between nodes
  - Below,  $\mu$  is the expectation,  $\sigma$  is the standard deviation, and  $P_{x,y}$  is the Pearson Correlation Coefficient (PCC) between two nodes

1. Weights

2. Degrees

$$P_{x,y} = \frac{E((x - \mu_x)(y - \mu_y))}{\sigma_x \sigma_y}$$

- Absolute Pearson Matrix:  $|P_{x,y}|$
- Graph Weights representation: Adjacency Matrix:  $A = |P_{x,y}| I$ , where I is an Identity Matrix
- Graph Degrees representation: Degree Matrix

$$D_{ii} = \sum_{j=1}^{N} A_{ij}$$

• Graph representation: Graph Laplacian (Laplacian Matrix, Combinatorial Laplacian)

$$L = D - A$$

Normalized Graph Laplacian:

$$L = I_N - D^{-\frac{1}{2}}AD^{\frac{1}{2}}$$





### Convolutions on Graphs (Spectral Graph Filtering):

- Convolutions on graphs in the spatial domain
  - No convinced mathematical definition
  - Hard to match local neighborhoods
- Convolutions on graphs with the spectral graph theory
  - Have a solid mathematical definition
  - Have a well-defined localized operator on graphs
- Spectral Theorem: Fourier Transform for graphs, i.e., for the graph Laplacian
  - U: Fourier basis, which is a complete set of orthonormal eigenvectors of L
  - A: a Diagonal Matrix, where the diagonal is the ordered real nonnegative eigenvalues of L

 $L = U\Lambda U^T$ 

Fourier Transform of Signal x

 x = U<sup>T</sup>x

 Spectral filtering of graph signal x (feature vector of graph nodes)

 y = g<sub>θ</sub>(L)x = g<sub>θ</sub>(UAU<sup>T</sup>)x = Ug<sub>θ</sub>(A)U<sup>T</sup>x
 A non-parametric filter, i.e., a filter whose parameters are all free, would be defined as g<sub>θ</sub>(A) = diag(θ)

 Problem 1

 Problem 2: No Local connectivity Convolution in the approximation
 Spatial domain
 Spatin<

•  $\theta$  is a vector of Fourier coefficients.

Problem 1 non-parametric filter not localized in space





### Convolutions on Graphs (*Spectral Graph Filtering*):



K<sup>th</sup> Chebyshev polynomial

$$T_{k}(x) = 2xT_{k-1}(x) - T_{k-2}(x)$$
  
 $T_{0} = 1$   
 $T_{1} = x$ 

The filter after approximation

$$g_{\theta}(\Lambda) = \sum_{k=1}^{K} \theta_{k} \Lambda^{k}$$

Weights Sharing  $\rightarrow$  Transfation Invariance

- **Defined Convolutional Operation**  $y = U\left(\sum_{k=1}^{K} \theta_k \Lambda^k\right) U^T x = \left(\sum_{k=1}^{K} \theta_k U \Lambda^k U^T\right) x = \left(\sum_{k=1}^{K} \theta_k L^k\right) x = \sum_{k=1}^{K} \theta_k (L^k x)$  $x_{new} \leftarrow Lx_i = \sum_i A_{ij}(x_i - x_j)$ Local connectivity No need for Fourier
- $\theta$  are the trainable parameters  $\leftarrow$  Back-propagation Algorithm
- K-hop Neighbor features divergence/average, K is the size of the repetitive field
- GCN Key Idea: Use "edge information" to "aggregate" "node information" to generate a new "node representation"









 $O(n^2) \rightarrow O(n)$ 



### Pooling on Graphs (Graph Coarsening + 1D Pooling)

- Traditional CNNs **don't** need to consider **neighbors** after convolutions
  - The output feature maps are regular (Euclidean Structure)
  - The neighbors are "meaningful"
- GCNs need to consider neighbors after convolutions
  - The output graphs' nodes are not arranged in any meaningful way
  - So, we have to find meaningful neighbors of the graph nodes after convolution to carry out pooling
  - We will use Graclus multilevel clustering algorithm, a cluster algorithm to find meaningful neighbors
  - a.k.a. Graph Coarsening
  - Minimize the local normalized cut

$$-W_{ij}(\frac{1}{d_i}+\frac{1}{d_j})$$

- i and j are two nodes. After the Coarsening, W<sub>ij</sub> will be their new weight







### Pooling on Graphs (Graph Coarsening + 1D Pooling)

- A COLOR OF THE PARTY OF THE PAR
- Along the way, a balanced binary tree was used to store nodes of the coarsened graph
  - Memory Efficient
- Then carry out one-dimensional pooling
- If there is singletons (non-matched nodes) → Cannot pool based on a size two → We will use a fake node.



### Model Initialization



- C6-P6-K2, [16, 32, 64, 128, 256, 512] filters
- Optimizer: Adam Optimizer with the Stochastic Gradient Descent (SGD) algorithm
  - Learning Rate: 0.01
  - Batch Size: 1,024
- Activation Function: Softplus (Smooth Rectified Linear Unit)
   f(x) = log(1 + e<sup>x</sup>)
- Softmax Output: y is the label,  $\hat{y}$  is the final output probability  $\hat{y} = \operatorname{argmax}(e^{y_i})$

$$\hat{y} = \operatorname{argmax}(\frac{e^{y_i}}{\sum_{i=1}^4 e^{y_i}})$$



• Loss Function: Cross-entropy with L2 regularization

Loss = 
$$-\sum_{i=1}^{4} y_i \log(\widehat{y_i}) + \lambda(\sum_{j=1}^{n} w_j^2 + b_j^2)$$

•  $\lambda$  (1×10<sup>-6</sup>) is the coefficient of L2 norm.



#### Which Chebyshev polynomial order should we use?





The model using 1<sup>st</sup> order Chebyshev polynomial approximation performed worst (<58% accuracy), while the others using 2<sup>nd</sup> to 5<sup>th</sup> order performed nearly the same.
 So, for our GCNs-Net, we will use 2<sup>nd</sup> Order Chebyshev to approximate filters.

### Which model should we use for EEG signals classification?





- For 64-electrode EEG system, the C6-P6-K2 model performed best (88.85% accuracy).
- Six-layer graph convolutions, each followed by a graph pooling layer, and finally used a Softmax layer to predict the EEG tasks.
- Used Batch normalization (BN), and L2 regularization to prevent overfitting.



### Results of the Subject-level Prediction:



- For the Subject-level prediction, we used the first 10 Subjects  $(S_1 \sim S_{10})$  from the PhysioNet Dataset.
- Averaged accuracy: 93.056%, Maximum accuracy: 98.72%.



### Results of the Group-level Prediction:



- At the Group-level, we used the first 20, 50, 100 Subjects from the PhysioNet Dataset.
- For 20 subjects, averaged accuracy: 88.57%, maximum accuracy: 89.387%.
- For 50 subjects, accuracy: 89.75%.
- For 100 subjects, accuracy: **88.14%**.



#### Compared with State-of-the-art Models:

| <b>Related Work</b>           | Max. GAA | Avg. GAA       | <i>p</i> -value | Level   | Approach   | Num of Subjects |
|-------------------------------|----------|----------------|-----------------|---------|------------|-----------------|
| Dose et al. (2018) [20]       | -        | 58.58%         |                 | Group   | CNNs       | 105             |
|                               | 80.38%   | 68.51%         | < 0.05          | Subject | CIVINS     | 1               |
| Ma et al. (2018) [53]         | 82.65%   | 68.20%         |                 | Group   | RNNs       | 12              |
| Here at al (2020) [18]        | 94.50%   | —              | _               | Group   | ESI CNINA  | 10              |
| Hou <i>et al.</i> (2020) [18] | 96.00%   | <del></del> ): | > 0.05          | Subject | ESI-CININS | 1               |
|                               | 89.387%  | 88.57%         |                 | Group   | GCNs-Net   | 20              |
| Author                        | 88.14%   | ·              | -               |         |            | 100             |
|                               | 98.72%   | 93.056%        | Subject         |         |            | 1               |

#### TABLE IV: Performance comparison on the PhysioNet Dataset

#### TABLE V: Performance comparison on the High Gamma Dataset

| <b>Related Work</b>              | Avg. GAA         | <i>p</i> -value | Level            | Approach           | Dataset                 |
|----------------------------------|------------------|-----------------|------------------|--------------------|-------------------------|
| Schirrmeister et al. (2017) [22] | 92.50%           | < 0.05          |                  | CNNs               |                         |
| Li et al. (2019) [54]            | 93.70%           | < 0.05          | Subject          | <b>CP-MixedNet</b> | 1 subjects              |
| Tang et al. (2019) [27]          | 95.30%           | > 0.05          |                  | DAN                |                         |
| Author                           | 80.89%<br>96.24% | -               | Group<br>Subject | GCNs-Net           | 14 subject<br>1 subject |



### To summarize my undergraduate studies

- **Research Topics:** EEG Signals/Tasks Classification
  - 5 Papers (All selected by SCI, 1 accepted, 4 under review)
  - Open-source <u>EEG-DL</u> on GitHub, a Deep Learning (DL) Library written by TensorFlow for EEG signals classification, currently supports 22 DL algorithms, and keeps updating.
  - 36+ GitHub stars, 12+ forks
- 2017 Summer School at the University of California, Irvine, CA, USA
- 2019 Summer Intern at Tsinghua University, Beijing, China
- Student Member of IEEE, ACM and CCF, and attended a few CCF talks in Beijing, China
- \* The projects' details can be found at my Homepage.

#### **Publications**



- A Novel Approach of Decoding EEG Four-Class Motor Imagery Tasks via Scout ESI and CNN. Yimin Hou, Lu Zhou, Shuyue Jia, and Xiangmin Lun. *Journal of Neural Engineering*, 2019; 17(1):016048. (Published)
- GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding Time-resolved EEG Motor Imagery Signals. Xiangmin Lun, Shuyue Jia \*, Yimin Hou, Yan Shi, Yang Li, Hanrui Yang, Shu Zhang, and Jinglei Lv. *IEEE Transactions on Neural Systems and Rehabilitation Engineering (TNSRE)*, 2020. (Major Revision)
- Deep Feature Mining via Attention-based BiLSTM-GCN for Human Motor Imagery Recognition. Yimin Hou, Shuyue Jia \*, Shu Zhang, Xiangmin Lun, Yan Shi, Yang Li, Hanrui Yang, Rui Zeng, and Jinglei Lv. *IEEE Access*, 2020. (Minor Revision/Resubmit)
- A Novel Synergetic Framework for Enhancing Electronic Nose Performance to measure the Quality Difference of Rice. Yan Shi, Xiaofei Jia, Hangcheng Yuan, Shuyue Jia, Jingjing Liu, and Hong Men. *Measurement Science and Technology*, 2020. (Major Revision)
- 5. Improving Performance: a Collaborative Strategy for Multi-data Fusion of Electronic Nose and Hyperspectral to Track the Quality Difference of Rice. Yan Shi, Hangcheng Yuan, Chenao Xiong, Shuyue Jia, Jingjing Liu, and Hong Men. Sensors & Actuators: B. Chemical, 2020. (Under Review)

\* denotes the Corresponding Author.

# Acknowledgements

*Supervisors*: Yimin Hou, Hanrui Yang, Yang Li, Yan Shi, and Jinglei Lv

Co-authors: Xiangmin Lun, Shu Zhang, and Rui Zeng

Labmates: Ziyu Huo, and Lu Zhou

Friends: Shitu Zhang, Shichang Li, Xingyu Tong

My parents

I would like to thank all the people who help and support me during my undergraduate studies. These research works could not have happened without you.



