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Research Background

• BCI: connects the brain with machines, acquires and analyzes brain signals
regarding actual or imagery tasks, and then commands machines.

• Significance: help the disabled (e.g., strokes) and understand our brains.
• Types of BCI:

– Electroencephalography (EEG)
– Magnetoencephalography (MEG)
– Functional Magnetic Resonance Imaging (fMRI)
– Invasive BCI Technologies (e.g., Neuralink)
– etc.

• Reasons for using EEG for this project:
– Non-invasiveness
– High Temporal Resolution
– Portability
– Inexpensive Equipment
– etc.

• Related Applications: Wheelchair (Nature Machine Intelligence, 2019), Spoken Sentences (Nature 2019)
• Specific Task: EEG Motor Imagery Tasks Classification (e.g., control a wheelchair through only brain signals)
• Our Goal: develop EEG-based BCI applications that could potentially be used to improve the current stroke 

rehabilitation strategies.

Potentially have a 
broad market.

https://www.nature.com/articles/s42256-019-0091-7
https://www.nature.com/articles/s41586-019-1119-1


Difficulties in dealing with EEG Signals

• Individual Variability → Lower Classification Accuracy

– Low Signal-noise ratio

– Different brain electrical conductivity ← different anatomical structure of brain

– Electrodes’ position error 

– etc.

• Slow Real-time Responding → Hard to develop Real-life Applications 

– Trial-level prediction (e.g., 4 s) (most literature)

– Window-level prediction (e.g., 0.4 s)

– Time-resolved prediction (e.g., 6.25 ms) (Our Work)

• Low Group-level Accuracy → Hard to develop Applications for a Group of People

– Subject-level prediction (most literature) (Our Work)

– Group-level prediction (Our Work)



Intuition & Motivation

• Traditional CNN-based approaches:

– Most recent published literature in the field of EEG (MI) introduced CNN-based approaches.

– Check our previous work (Journal of Neural Engineering, SCI, IF=4.551), which used CNN method and achieved 

competitive results (96% accuracy at the subject level, and 94.50% at the group level (10 subjects)).

– Local connectivity, weights sharing, translation invariance, hierarchical, low dimensionality, etc.

– Implemented on the Euclidean-structured data (e.g. Image, voice, natural languages)

• Neuroscience research has increasingly emphasized Brain Network Dynamics.

– The functional topological connectivity of EEG electrodes → Graph instead of Euclidean structure

Our Question:

Can we implement CNNs
on graphs directly?

https://iopscience.iop.org/article/10.1088/1741-2552/ab4af6/meta


Can we use Traditional CNNs on graphs directly?

• Traditional CNNs cannot process graphs directly:

– Graphs are irregular (1. unordered, 2. vary in size)

– → Convolution cannot keep translation invariance on the non-Euclidean signals

• Can we implement CNNs on Graphs? → Graph Convolutional Neural Networks (GCNs / Graph CNN)

– Can process Graph-structured Signals directly

– Consider the relationship properties (e.g., correlations) between nodes

– Consider the functional topological relationships of EEG electrodes

Our Question:
How to implement CNNs on graphs?

(How to implement GCNs?)
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64-channel Signals

20 Subjects× 84 Trials× 640 Samples

(iv) The GCNs-Net

(i) EEG Data Acquisition
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Real-time 64-channel Raw EEG Signals

Our presented GCNs-Net for EEG Signals Classification
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Codes available at https://github.com/SuperBruceJia/EEG-DL.

https://github.com/SuperBruceJia/EEG-DL


Benchmark Dataset Description

• The PhysioNet Dataset (EEG Motor Movement/Imagery Dataset)

• 64-electrode EEG (International 10-10 system, excluding electrodes Nz, F9, F10, FT9,
FT10, A1, A2, TP9, TP10, P9, and P10)

• 109 subjects (largest number of participants in the field of EEG MI)

• 4-class EEG Motor Imagery Classification 
- Imagining left fist, right fist, both fists, and both feet

• For each subject, 3 runs, 7 trials, 4 classes → 84 trials in total

• For each trial, 4 seconds experimental duration, 160 Hz Sampling Rate → 640 Time Points

• We applied Time-resolved Method → Real-time Applications:
- Total samples per subject: 3 runs × 7 trials × 4 classes × 4 seconds × 160 Hz = 53,760 samples
- Randomly shuffled, 90% as the training set and the left 10% as the test set.



Graph Representation: Laplacian Matrix in Graph Theory 

• Undirected and Weighted Graph: G = V, E, A
– V: nodes, |V| = N
– E: edges that connected nodes
– A: weights / correlations between nodes 

• Correlations representation: Pearson Matrix
– Measure the linear correlations between nodes
– Below, 𝜇 is the expectation, 𝜎 is the standard deviation, and P!,# is the Pearson Correlation Coefficient 

(PCC) between two nodes

P!,# =
E((x − µ!)(y − µ#))

σ!σ#
– Absolute Pearson Matrix: |P!,#|

• Graph Weights representation: Adjacency Matrix: A = P!,# − I, where I is an Identity Matrix

• Graph Degrees representation: Degree Matrix

D$$ =4
%&'

(

A$%

• Graph representation: Graph Laplacian (Laplacian Matrix, Combinatorial Laplacian)
L = D − A

• Normalized Graph Laplacian:
L = I( − D

)'*AD
'
*
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Convolutions on Graphs (Spectral Graph Filtering):
• Convolutions on graphs in the spatial domain

– No convinced mathematical definition

– Hard to match local neighborhoods

• Convolutions on graphs with the spectral graph theory
– Have a solid mathematical definition

– Have a well-defined localized operator on graphs

• Spectral Theorem: Fourier Transform for graphs, i.e., for the graph Laplacian

– U: Fourier basis, which is a complete set of orthonormal eigenvectors of L

– Λ: a Diagonal Matrix, where the diagonal is the ordered real nonnegative eigenvalues of L
L = UΛU+

• Fourier Transform of Signal x
9x = U+x

• Spectral filtering of graph signal x (feature vector of graph nodes)
y = g, L x = g, UΛU+ x = Ug, Λ U+x

• A non-parametric filter, i.e., a filter whose parameters are all free, would be defined as 
g, Λ = diag(θ)

• θ is a vector of Fourier coefficients.

frequency domainConvolution in the spatial domain

Spatial domain 

Problem 2: No Local connectivity

Problem 1
non-parametric filter  
not localized in space

Solution:
Polynomial approximation



Convolutions on Graphs (Spectral Graph Filtering):
• One commonly used filter is the Chebyshev polynomial

– Kth Chebyshev polynomial
T- x = 2xT-)' x − T-)* x

T. = 1
T' = x

– The filter after approximation

g, Λ = 4
-&'

/

θ-Λ-

– Defined Convolutional Operation

y = U 4
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x012 ← Lx$ =4
%
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– θ are the trainable parameters ← Back-propagation Algorithm
– K-hop Neighbor features divergence/average, K is the size of the repetitive field
– GCN Key Idea: Use "edge information" to "aggregate" "node information" to generate a new "node 

representation"

Weights Sharing → Translation Invariance

Local connectivity
No need for Fourier
O(n2) → O(n)

Convolution:
Weighted Sum

Lk



Pooling on Graphs (Graph Coarsening + 1D Pooling)

• Traditional CNNs don’t need to consider neighbors after convolutions

– The output feature maps are regular (Euclidean Structure)

– The neighbors are “meaningful”

• GCNs need to consider neighbors after convolutions

– The output graphs’ nodes are not arranged in any meaningful way

– So, we have to find meaningful neighbors of the graph nodes after convolution to carry out pooling

– We will use Graclus multilevel clustering algorithm, a cluster algorithm to find meaningful neighbors

– a.k.a. Graph Coarsening

– Minimize the local normalized cut

−W$%(
1
d$
+
1
d%
)

– i and j are two nodes. After the Coarsening, W$% will be their new weight



Pooling on Graphs (Graph Coarsening + 1D Pooling)

• Along the way, a balanced binary tree was used to store nodes of the coarsened graph

– Memory Efficient

• Then carry out one-dimensional pooling

• If there is singletons (non-matched nodes) → Cannot pool based on a size two → We will use a 

fake node.



Model Initialization

• Optimal Model Structure (64-electrode EEG system) 

– C6-P6-K2, [16, 32, 64, 128, 256, 512] filters 

• Optimizer: Adam Optimizer with the Stochastic Gradient Descent (SGD) algorithm

– Learning Rate: 0.01

– Batch Size: 1,024

• Activation Function: Softplus (Smooth Rectified Linear Unit)

f x = log(1 + e!)

• Softmax Output: y is the label, 9y is the final output probability

9y = argmax(
e#%

∑$&'3 e#%
)

• Loss Function: Cross-entropy with L2 regularization

Loss = −4
$&'

3

y$ log Ny$ + 𝜆(4
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0

w%
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• 𝜆 (1×10-6) is the coefficient of L2 norm.



Which Chebyshev polynomial order should we use?

• The model using 1st order Chebyshev polynomial approximation performed worst
(<58% accuracy), while the others using 2nd to 5th order performed nearly the same.

• So, for our GCNs-Net, we will use 2nd Order Chebyshev to approximate filters.



Which model should we use for EEG signals classification?

• For 64-electrode EEG system, the C6-P6-K2 model performed best (88.85% accuracy).
• Six-layer graph convolutions, each followed by a graph pooling layer, and finally used a

Softmax layer to predict the EEG tasks.
• Used Batch normalization (BN), and L2 regularization to prevent overfitting.



Results of the Subject-level Prediction:

• For the Subject-level prediction, we used the first 10 Subjects (S1∼S10) from the PhysioNet Dataset.
• Averaged accuracy: 93.056%, Maximum accuracy: 98.72%.



Results of the Group-level Prediction:

• At the Group-level, we used the first 20, 50, 100 Subjects from the PhysioNet Dataset.
• For 20 subjects, averaged accuracy: 88.57%, maximum accuracy: 89.387%.
• For 50 subjects, accuracy: 89.75%.
• For 100 subjects, accuracy: 88.14%.



Compared with State-of-the-art Models:



To summarize my undergraduate studies

• Research Topics: EEG Signals/Tasks Classification

– 5 Papers (All selected by SCI, 1 accepted, 4 under review)

– Open-source EEG-DL on GitHub, a Deep Learning (DL) Library written by TensorFlow for EEG 

signals classification, currently supports 22 DL algorithms, and keeps updating.

– 36+ GitHub stars, 12+ forks

• 2017 Summer School at the University of California, Irvine, CA, USA

• 2019 Summer Intern at Tsinghua University, Beijing, China

• Student Member of IEEE, ACM and CCF, and attended a few CCF talks in Beijing, China

* The projects’ details can be found at my Homepage.

https://github.com/SuperBruceJia/EEG-DL
https://shuyuej.com/
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