GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding Time-resolved EEG Motor Imagery Signals

School of Automation Engineering, NEEPU, China

Shuyue Jia
shuyuej@ieee.org

Supervisor: Yimin Hou
Research Background

- **BCI**: connects the brain with machines, *acquires and analyzes brain signals* regarding actual or imagery tasks, and then *commands machines*.
- **Significance**: help the disabled (e.g., strokes) and understand our brains.
- **Types of BCI**:
 - Electroencephalography (EEG)
 - Magnetoencephalography (MEG)
 - Functional Magnetic Resonance Imaging (fMRI)
 - Invasive BCI Technologies (e.g., Neuralink)
 - etc.
- **Reasons for using EEG for this project**:
 - Non-invasiveness
 - High Temporal Resolution
 - Portability
 - Inexpensive Equipment
 - etc.
 - Potentially have a broad market.
- **Specific Task**: EEG Motor Imagery Tasks Classification (e.g., control a wheelchair through only brain signals)
- **Our Goal**: develop *EEG-based BCI applications* that could potentially be used to improve the current stroke rehabilitation strategies.
Difficulties in dealing with EEG Signals

• **Individual Variability → Lower Classification Accuracy**
 - Low Signal-noise ratio
 - Different brain electrical conductivity ← different anatomical structure of brain
 - Electrodes’ position error
 - etc.

• **Slow Real-time Responding → Hard to develop Real-life Applications**
 - Trial-level prediction (e.g., 4 s) (most literature)
 - Window-level prediction (e.g., 0.4 s)
 - Time-resolved prediction (e.g., 6.25 ms) (Our Work)

• **Low Group-level Accuracy → Hard to develop Applications for a Group of People**
 - Subject-level prediction (most literature) (Our Work)
 - Group-level prediction (Our Work)
Intuition & Motivation

- Traditional CNN-based approaches:
 - Most recent published literature in the field of EEG (MI) introduced **CNN-based approaches**.
 - Check our previous work *(Journal of Neural Engineering, SCI, IF=4.551)*, which used CNN method and achieved competitive results (96% accuracy at the subject level, and 94.50% at the group level (10 subjects)).
 - **Local connectivity, weights sharing, translation invariance, hierarchical, low dimensionality, etc.**
 - Implemented on the **Euclidean-structured data** (e.g. Image, voice, natural languages)

- Neuroscience research has increasingly emphasized **Brain Network Dynamics**.
 - The **functional topological connectivity** of EEG electrodes → **Graph** instead of Euclidean structure

Our Question:
Can we implement CNNs on graphs directly?
Can we use Traditional CNNs on graphs directly?

- Traditional CNNs cannot process graphs directly:
 - **Graphs are irregular** (1. unordered, 2. vary in size)
 - → Convolution cannot keep **translation invariance** on the non-Euclidean signals

- Can we implement CNNs on Graphs? → **Graph Convolutional Neural Networks** (GCNs / Graph CNN)
 - Can process Graph-structured Signals directly
 - Consider the relationship properties (e.g., correlations) between nodes
 - Consider the functional topological relationships of EEG electrodes

Our Question:
How to implement CNNs on graphs?
(How to implement GCNs?)
Our presented GCNs-Net for EEG Signals Classification

(i) EEG Data Acquisition

- 64-channel Signals
- 20 Subjects × 84 Trials × 640 Samples

(ii) Correlations between EEG Electrodes

- PCC Matrix
- Absolute PCC Matrix
- Adjacency Matrix
- Graph Laplacian

(iii) Graph Representation

- Graph Weights & Degrees

(iv) The GCNs-Net

- Softmax
- Flatten
- Pooling
- GCN

Real-time 64-channel Raw EEG Signals

Codes available at https://github.com/SuperBruceJia/EEG-DL.
Benchmark Dataset Description

- The PhysioNet Dataset (EEG Motor Movement/Imagery Dataset)
- 64-electrode EEG (International 10-10 system, excluding electrodes Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9, and P10)

- 109 subjects (largest number of participants in the field of EEG MI)
- 4-class EEG Motor Imagery Classification
 - Imagining left fist, right fist, both fists, and both feet
- For each subject, 3 runs, 7 trials, 4 classes → 84 trials in total
- For each trial, 4 seconds experimental duration, 160 Hz Sampling Rate → 640 Time Points
- We applied Time-resolved Method → Real-time Applications:
 - Total samples per subject: 3 runs × 7 trials × 4 classes × 4 seconds × 160 Hz = 53,760 samples
 - Randomly shuffled, 90% as the training set and the left 10% as the test set.
Graph Representation: **Laplacian Matrix** in Graph Theory

- **Undirected and Weighted Graph**: $G = \{V, E, A\}$
 - V: nodes, $|V| = N$
 - E: edges that connected nodes
 - A: weights / correlations between nodes

- **Correlations representation**: Pearson Matrix
 - Measure the linear correlations between nodes
 - Below, μ is the expectation, σ is the standard deviation, and $P_{x,y}$ is the Pearson Correlation Coefficient (PCC) between two nodes
 $$P_{x,y} = \frac{E((x - \mu_x)(y - \mu_y))}{\sigma_x \sigma_y}$$
 - Absolute Pearson Matrix: $|P_{x,y}|$

- **Graph Weights representation**: Adjacency Matrix: $A = |P_{x,y}| - I$, where I is an Identity Matrix

- **Graph Degrees representation**: Degree Matrix
 $$D_{ii} = \sum_{j=1}^{N} A_{ij}$$

- **Graph representation**: Graph Laplacian (Laplacian Matrix, Combinatorial Laplacian)
 $$L = D - A$$

- **Normalized Graph Laplacian**:
 $$L = I_N - D^{-\frac{1}{2}} A D^2$$
Convolutions on Graphs (*Spectral Graph Filtering*):

- Convolutions on graphs in the spatial domain
 - No convinced mathematical definition
 - Hard to match local neighborhoods
- Convolutions on graphs with the spectral graph theory
 - Have a solid mathematical definition
 - Have a well-defined localized operator on graphs
- Spectral Theorem: Fourier Transform for graphs, i.e., for the graph Laplacian
 - U: Fourier basis, which is a complete set of orthonormal eigenvectors of L
 - Λ: a Diagonal Matrix, where the diagonal is the ordered real nonnegative eigenvalues of L

\[L = U \Lambda U^T \]

- Fourier Transform of Signal \(x \)

\[\hat{x} = U^T x \]

- Spectral filtering of graph signal \(x \) (feature vector of graph nodes)

\[y = g_{\theta}(L)x = g_{\theta}(U \Lambda U^T)x = U g_{\theta}(\Lambda) U^T x \]

- A non-parametric filter, i.e., a filter whose parameters are all free, would be defined as

\[g_{\theta}(\Lambda) = \text{diag}(\theta) \]

- \(\theta \) is a vector of Fourier coefficients.
Convolutions on Graphs (Spectral Graph Filtering):

- One commonly used filter is the Chebyshev polynomial
 - \(K \)-th Chebyshev polynomial
 \[
 T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x)
 \]
 \(T_0 = 1 \)
 \(T_1 = x \)
 - The filter after approximation
 \[
 g_\theta(\Lambda) = \sum_{k=1}^{K} \theta_k \Lambda^k
 \]
 - Defined Convolutional Operation
 \[
 y = U \left(\sum_{k=1}^{K} \theta_k \Lambda^k \right) U^T x = \left(\sum_{k=1}^{K} \theta_k U \Lambda^k U^T \right) x = \left(\sum_{k=1}^{K} \theta_k L^k \right) x = \sum_{k=1}^{K} \theta_k (L^k x)
 \]
 \(x_{\text{new}} \leftarrow Lx_i = \sum_j A_{ij}(x_i - x_j) \)
 - \(\theta \) are the trainable parameters \(\leftarrow \) Back-propagation Algorithm
 - \(K \)-hop Neighbor features divergence/average, \(K \) is the size of the repetitive field
 - **GCN Key Idea**: Use "edge information" to "aggregate" "node information" to generate a new "node representation"

\[
K = 1
\]
\[
K = 2
\]
Pooling on Graphs (*Graph Coarsening + 1D Pooling*)

- Traditional CNNs **don’t** need to consider **neighbors** after convolutions
 - The output feature maps are regular (Euclidean Structure)
 - The neighbors are “meaningful”

- GCNs need to consider neighbors after convolutions
 - The output graphs’ nodes are not arranged in any meaningful way
 - So, we have to find meaningful neighbors of the graph nodes after convolution to carry out pooling
 - We will use **Graclus multilevel clustering algorithm**, a cluster algorithm to find meaningful neighbors
 - a.k.a. Graph Coarsening
 - Minimize the local normalized cut

 \[-W_{ij}\left(\frac{1}{d_i} + \frac{1}{d_j}\right)\]

 - i and j are **two nodes**. After the Coarsening, W_{ij} will be their new weight
Pooling on Graphs (Graph Coarsening + 1D Pooling)

- Along the way, a balanced binary tree was used to store nodes of the coarsened graph
 - Memory Efficient
- Then carry out one-dimensional pooling
- If there is singletons (non-matched nodes) → Cannot pool based on a size two → We will use a fake node.
Model Initialization

- **Optimal Model Structure (64-electrode EEG system)**
 - C6-P6-K2, [16, 32, 64, 128, 256, 512] filters

- **Optimizer: Adam Optimizer with the Stochastic Gradient Descent (SGD) algorithm**
 - Learning Rate: 0.01
 - Batch Size: 1,024

- **Activation Function: Softplus (Smooth Rectified Linear Unit)**
 \[f(x) = \log(1 + e^x) \]

- **Softmax Output:** \(y \) is the label, \(\hat{y} \) is the final output probability
 \[\hat{y} = \text{argmax} \left(\frac{e^{y_i}}{\sum_{i=1}^{4} e^{y_i}} \right) \]

- **Loss Function: Cross-entropy with L2 regularization**
 \[\text{Loss} = -\sum_{i=1}^{4} y_i \log(\hat{y}_i) + \lambda \left(\sum_{j=1}^{n} w_j^2 + b_j^2 \right) \]

- \(\lambda (1 \times 10^{-6}) \) is the coefficient of L2 norm.
Which Chebyshev polynomial order should we use?

- The model using 1st order Chebyshev polynomial approximation performed worst (<58\% accuracy), while the others using 2nd to 5th order performed nearly the same.
- So, for our GCNs-Net, we will use 2nd Order Chebyshev to approximate filters.
Which model should we use for EEG signals classification?

- For 64-electrode EEG system, the C6-P6-K2 model performed best (88.85% accuracy).
- Six-layer graph convolutions, each followed by a graph pooling layer, and finally used a Softmax layer to predict the EEG tasks.
- Used Batch normalization (BN), and L2 regularization to prevent overfitting.
Results of the Subject-level Prediction:

- For the Subject-level prediction, we used the first 10 Subjects ($S_1 \sim S_{10}$) from the PhysioNet Dataset.
- Averaged accuracy: **93.056%**, Maximum accuracy: **98.72%**.
Results of the Group-level Prediction:

- At the Group-level, we used the first 20, 50, 100 Subjects from the PhysioNet Dataset.
- For 20 subjects, averaged accuracy: **88.57%**, maximum accuracy: **89.387%**.
- For 50 subjects, accuracy: **89.75%**.
- For 100 subjects, accuracy: **88.14%**.
Compared with State-of-the-art Models:

TABLE IV: Performance comparison on the PhysioNet Dataset

<table>
<thead>
<tr>
<th>Related Work</th>
<th>Max. GAA</th>
<th>Avg. GAA</th>
<th>p-value</th>
<th>Level</th>
<th>Approach</th>
<th>Num of Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose et al. (2018) [20]</td>
<td>80.38%</td>
<td>58.58%</td>
<td></td>
<td>Group</td>
<td>CNNs</td>
<td>105</td>
</tr>
<tr>
<td>Ma et al. (2018) [53]</td>
<td>82.65%</td>
<td>68.51%</td>
<td>< 0.05</td>
<td>Subject</td>
<td>RNNs</td>
<td>12</td>
</tr>
<tr>
<td>Hou et al. (2020) [18]</td>
<td>94.50%</td>
<td>68.20%</td>
<td></td>
<td>Group</td>
<td>ESI-CNNs</td>
<td>10</td>
</tr>
<tr>
<td>Author</td>
<td>96.00%</td>
<td>89.387%</td>
<td>> 0.05</td>
<td>Group</td>
<td>GCNs-Net</td>
<td>20</td>
</tr>
<tr>
<td>Author</td>
<td>88.14%</td>
<td>88.57%</td>
<td></td>
<td>Group</td>
<td>GCNs-Net</td>
<td>20</td>
</tr>
<tr>
<td>Author</td>
<td>98.72%</td>
<td>93.056%</td>
<td></td>
<td>Subject</td>
<td>GCNs-Net</td>
<td>100</td>
</tr>
</tbody>
</table>

TABLE V: Performance comparison on the High Gamma Dataset

<table>
<thead>
<tr>
<th>Related Work</th>
<th>Avg. GAA</th>
<th>p-value</th>
<th>Level</th>
<th>Approach</th>
<th>Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schirrmeister et al. (2017) [22]</td>
<td>92.50%</td>
<td>< 0.05</td>
<td>Subject</td>
<td>CNNs</td>
<td>1 subjects</td>
</tr>
<tr>
<td>Li et al. (2019) [54]</td>
<td>93.70%</td>
<td>< 0.05</td>
<td>Subject</td>
<td>CP-MixedNet</td>
<td>1 subjects</td>
</tr>
<tr>
<td>Tang et al. (2019) [27]</td>
<td>95.30%</td>
<td>> 0.05</td>
<td>Subject</td>
<td>DAN</td>
<td>1 subject</td>
</tr>
<tr>
<td>Author</td>
<td>80.89%</td>
<td></td>
<td>Group</td>
<td>GCNs-Net</td>
<td>14 subject</td>
</tr>
<tr>
<td>Author</td>
<td>96.24%</td>
<td></td>
<td>Subject</td>
<td>GCNs-Net</td>
<td>1 subject</td>
</tr>
</tbody>
</table>
To summarize my undergraduate studies

• **Research Topics:** EEG Signals/Tasks Classification
 – 5 Papers (All selected by SCI, 1 accepted, 4 under review)
 – 36+ GitHub stars, 12+ forks

• 2017 Summer School at the *University of California, Irvine*, CA, USA

• 2019 Summer Intern at *Tsinghua University*, Beijing, China

• Student Member of IEEE, ACM and CCF, and attended a few CCF talks in Beijing, China

* The projects’ details can be found at my [Homepage](#).
Publications

* denotes the Corresponding Author.
Acknowledgements

Supervisors: Yimin Hou, Hanrui Yang, Yang Li, Yan Shi, and Jinglei Lv

Co-authors: Xiangmin Lun, Shu Zhang, and Rui Zeng

Labmates: Ziyu Huo, and Lu Zhou

Friends: Shitu Zhang, Shichang Li, Xingyu Tong

My parents

I would like to thank all the people who help and support me during my undergraduate studies. These research works could not have happened without you.