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ü [Motivation] Graph Modeling for EEG Electrodes System
ü [Method] Graph Representation Learning of EEG Signals
ü [Motivation] Spatial-Temporal Analysis of EEG Signals
ü [Method] Deep Feature Mining of EEG Signals

EEG Research Novelty

Graph Representation Learning of EEG Signals

Deep Feature Mining of EEG Signals

node

edge
0.7

Weight

mapping topology

interpret modelFunctional Networks

International 10-10 EEG System

Graph



64-channel Signals

20 Subjects × 84 Trials × 640 Samples

(iv) The GCNs-Net
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(i) 64-channel Raw EEG Signals Acquisition
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(ii) BiLSTM with Attention for Feature Extraction
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Attention-based Bidirectional Long Short-term Memory (Bi-LSTM)
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Background
u BCI: establish connections between the brain and machines

(1) Acquire and analyze brain signals while conducting actual or imagery tasks

(2) Control machines

u Significance: help the disabled and understand the human brain

u Types of BCI:

u Electroencephalography (EEG)

u Magnetoencephalography (MEG)

u Functional Magnetic Resonance Imaging (fMRI)

u Invasive BCI Technologies (e.g., Neuralink)

u Reasons for using EEG for this project:

u Non-Invasiveness

u High Temporal Resolution

u Portability

u Inexpensive Equipment

u Specific Task: EEG Motor Imagery (e.g., control a wheelchair via imagery-based EEG signals)

u Our Research: develop EEG-based BCI technologies to improve current stroke rehabilitation strategies

A potential market

Image Credit: in the public domain.



Key Points in dealing with EEG time series

u Individual Variability → Lower Classification Accuracy

ü Low SNR

ü Different brain electrical conductivity ← different anatomical structure of brain

ü Electrodes’ positional error 

u Slow Responding → Hard to develop Real-life Applications 

ü [most literature] Trial-level prediction (e.g., 4 s)

ü Window/Slide-level prediction (e.g., 0.4 s)

ü Time-resolved prediction (e.g., 6.25 ms) (Our Work)

u Lower Group-level Accuracy → Hard to develop Applications for a Group of People

ü [most literature] Subject-level prediction (Our Work)

ü Group-level prediction (Our Work)

EEG Electrodes’
Structure Modeling

Time-resolved or Window-based 
Signal Sampling

Feature Extraction



Motivation

Convolutional Neural Networks:

• Module: Convolution → Pooling → Fully-connected

• Modeling: Euclidean-Structured Data (e.g., Image, Speech, Natural Language)

• Neuroscience research has increasingly emphasized Brain Network Dynamics

• Model Functional Topological Connectivity of EEG Electrodes → Graph (Non-Euclidean Structure)

Our Question

How to model the EEG System 
as a Graph?

How can we process EEG Signals
via Graph Representation Learning?
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Can we directly apply convolutions on graphs?

u Traditional CNN cannot directly process graph signals

u Graph is irregular (i.e., unordered and vary in size)

u Convolution cannot keep Translation Invariance on non-Euclidean signals

u Graph Convolutional Neural Networks (GCN)

u Directly process non-Euclidean graph-structured signals

u Consider relational properties (e.g., correlations) between nodes

→ Model Functional Topological Relationships among EEG electrodes

→ Analyze and interpret Brain Network Dynamics



Benchmark Dataset
u The PhysioNet Dataset (EEG Motor Movement/Imagery Dataset)

u International 10-10 EEG System → 64 electrodes

(excluding electrodes Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9, and P10)

u 109 subjects (the largest number of participants in the field of EEG Motor Imagery)

u Task: 4-class EEG Motor Imagery Classification 

ü Imagining (Task 1) left fist, (Task 2) right fist, (Task 3) both fists, (Task 4) both feet

u Each subject → 3 runs, 7 trials, 4 classes → 84 trials in total

u Each trial → 4 seconds experimental duration, 160 Hz Sampling Rate → 640 Time Points

u We apply the Time-resolved Sampling Method
ü Total samples per subject: 3 runs × 7 trials × 4 classes × 4 seconds × 160 Hz = 53,760 samples

ü Experimental Setting: 90% as the training set and the left 10% as the test set

Image Credit: The PhysioNet Dataset and the middle image is in the public domain.



Preliminary: Graph Representation

Definition: An Undirected and Weighted Graph with N nodes: 𝐆 = 𝐕, 𝐄, 𝐀
– V: nodes (vertices), |V| = N
– E: edges (links) that connect nodes
– A: weights (correlations) between nodes 

Nodes Correlations: Pearson Matrix P ∈ R!×! (denotes as PCC matrix)
– Measure the linear correlations between node x and node y
– 𝜇 is the mean, 𝜎 is the standard deviation, and 𝑃#,% is the Pearson Correlation Coefficient between node x and node y

𝑃#,% =
E((𝐱 − 𝜇#)(𝐲 − 𝜇%))

𝜎#𝜎%
– Absolute Pearson Matrix: |𝐏| ∈ R!×! and |𝑃𝑖𝑗| ∈ [0, 1] → Note: In this work, we only consider scale.

Graph Weights: Adjacency Matrix 𝐀 = 𝐏 − 𝐈 ∈ R!×!, where I is an Identity Matrix
Graph Degrees: Degree Matrix D ∈ R!×!

𝐷&& =:
'()

!

𝐴&'

Graph Representation: Combinatorial Laplacian L ∈ R!×!
𝐋 = 𝐃 − 𝐀

Normalized:
𝐋 = 𝐈 − 𝐃*
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Preliminary: 

Spectral Theorem for Graph Laplacian L
𝐋 = 𝐔𝚲𝐔!

𝐋𝐔 = 𝚲𝐔

– U: Fourier basis → real and orthonormal eigenvectors of L

– 𝚲: Fourier modes → the diagonal is the ordered and real nonnegative eigenvalues of L

Graph Fourier Transforms of Signal f

F 𝑓 𝛌 = %𝑓 𝛌 =&
!"#

$

𝑓 𝑖 ×𝑈(𝑖)

!𝑓 𝛌 is the projection value of the Fourier basis 𝐔

can be seen as the e"#$%
in Fourier Transforms

%𝑓 𝛌 = 𝐔%𝑓⟺ 𝑓 = 𝐔 %𝑓 𝛌



Preliminary: Graph Convolution via Graph Fourier Transform

(𝑓 ∗ ℎ)𝐆= F"#( -𝑓(𝑤)×0ℎ(𝑤))

(𝑓 ∗ ℎ)𝐆= F"# 𝐔$𝑓 ⊙ (𝐔$ℎ)

-𝑓 𝛌 = 𝐔$𝑓
Hadamard Product

(Element-wise Multiplication)

(𝑓 ∗ ℎ)𝐆= 𝐔 𝐔$𝑓 ⊙ (𝐔$ℎ)

𝑓 = 𝐔 -𝑓 𝛌

(𝑓 ∗ ℎ)𝐆= 𝐔 diag[0ℎ 𝜆# , 0ℎ 𝜆% , … , 0ℎ 𝜆& ]𝐔$𝑓

[n × n]

F 𝑓 ∗ ℎ 𝐆 = -𝑓 𝑤 ×0ℎ(𝑤)

Note: Fourier Transforms of Convolution in the spatial domain
⇔

Point-wise Multiplication of two Fourier transformed signals

Source: https://en.wikipedia.org/wiki/Convolution_theorem

[n × n] [n × n]
[n × d]

Notation:

Signal f

Signal h

F: Fourier Transforms

F*): Inverse Fourier Transforms
@𝑓 𝑤 : F(f)

Cℎ(𝑤): F(h)

Convolution



(𝑓 ∗ ℎ)𝐆= 𝐔 diag[0ℎ 𝜆# , 0ℎ 𝜆% , … , 0ℎ 𝜆& ]𝐔$𝑓

𝓨 = 𝜎(𝐔𝐠𝛉𝐔$𝛘)

Activation Function

𝓨 = 𝜎(𝐔𝐠𝛉(𝚲)𝐔$𝛘)
𝚲 = diag(𝜆#, 𝜆%, … , 𝜆&)

𝐠𝛉 𝚲 = C
()*

+

𝜃(𝚲(Approximate

Kth Polynomial Function
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Credit: Defferrard et al., Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, In NeurIPS 2016.

Graph Convolution



Graph Convolution

𝓨 = 𝜎 &
F"G

H

𝜃F 𝐋F𝛘

Pros:

1. No need for Spectral Decomposition of 𝐋

2. Less number of parameters (decrease model complexity) → K≪ N

Cons: Need to compute 𝐋(

Weight Sharing

No need for Fourier Transform

Convolution:
Weighted Sum

𝐱𝐧𝐞𝐰 ← 𝐋𝐱𝐢 =(
#

𝐴*#(𝐱𝐢 − 𝐱𝐣)

GCN Key Idea: Use "edge information" to aggregate "node information" to generate a new "node representation"

Node Aggregation
K is Filter Size

Laplace Operator
Local connectivity

Beauty is in Simplicity

Localize in Space
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Pooling on Graphs (Graph Coarsening)

• Traditional CNN doesn’t need to consider neighbors after convolutions

– [Euclidean Structure] The output Feature Maps are “regular”

– The neighbor is “meaningful”

• GCNs need to consider neighbors after convolutions

– [Non-Euclidean Structure] The output graphs’ nodes are not arranged in any meaningful way

– Use Graclus Multilevel Clustering Algorithm to find “meaningful” neighbors

– Minimize the Local Normalized Cut (a cluster grouping method)

−𝑊&'(
1
𝑑&
+
1
𝑑'
)

– i and j denote node i and node j

– 𝑊&' is the learned weight between node i and node j

Image Credit: in the public domain.



64-channel Signals

20 Subjects × 84 Trials × 640 Samples

(iv) The GCNs-Net

(i) EEG Data Acquisition
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Correlation among EEG electrodes
Two Subjects: Subject 10 and 5

Problem: Individual Variability



Correlation among EEG electrodes
20 Subjects and 100 Subjects

Increasing the number of subjects alleviates individual variability 



Model Design for 64-electrode EEG System



Model Optimization
• Ablation Study: Optimal Model Structure (64-electrode EEG System) 

– C6-P6-K2 with [16, 32, 64, 128, 256, 512] filters 

• Gradient Iterative Solver: Adam Optimizer with Stochastic Gradient Descent (SGD) algorithm

– Learning Rate: 0.01

– Batch Size: 1,024

• Activation Function: Softplus (Smooth Rectified Linear Unit)

F 𝐱 = log(1 + e𝐱)

• Model Output: Softmax: 𝐲 are labels, M𝐲 are the final output tasks

N𝑦& = argmax
e%!

∑-(). e%!

• Loss Function: Cross-entropy Loss with L2 regularization

Loss = −:
-()

.

𝑦& log N𝑦& + λ :
/()

0

𝑤/+ + 𝑏/+

λ = 1×10-6 is the coefficient of the L2 regularization.



Ablation Study

K2 → K5
Similar Performance

K1
Poor Performance



Experimental Results
Groupwise Prediction and Subject-specific Adaptation

Note: p-value < 0.05 → Statistically Significant Difference



Takeaways and Future Work

ü Graph Representation

Graph Representation Learning to deeply extract Network Patterns of Brain Dynamics for EEG classification.

ü Model Converge

Converge for both Personalized and Groupwise Predictions, indicating that the GCNs-Net is able to build a 

generalized representation of EEG time-series against both Personalized and Groupwise Variations.

ü Future Work

Model EEG signals as Dynamic Graphs and process them via Dynamic Graph Representation Learning.
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One Problem of the GCNs-Net

ü GCNs-Net is based on Time-resolved Signal → doesn’t consider Temporal Information

Motivation:

ü [Spatial-Temporal Analysis] Consider Temporal and Spatial Information from EEG signals

ü [Responsive] Maintain High Responding Time

Time-resolved 
Signal

Temporal informationSpatial information

0.4 s

Image Credit: The PhysioNet Dataset.



64-channel Raw EEG Signals Acquisition

ü 4-s Signals (experimental duration): 0.4-s segments over time

ü Each Segment: 64 channels × 64 time steps

ü Pre-processed Data: Temporal Information + Spatial Information

0.4-second Segments
Data over experimental 

Duration (4 seconds)
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Temporal Information Extraction

Recurrent Neural Network (RNN) Long Short-Term Memory (LSTM)

ü Designed for order-mattered sequential data, e.g., time series

ü The learned features at time step t are affected by 𝐱Y and 𝐱YZ[ → continuly learn from time series

ü LSTM: better capture long-range sequence dependencies

ü Gated Recurrent Units (GRU): lightweight architecture with comparable performance

unrolling the network through time

Image Credit: LeCun et al., Deep Learning, In Nature.



Long Short-term Memory (LSTM)

ü Capture Long-range Dependencies

by the long-term state path 𝐜,"# → 𝐜,
ü Input Gate: store 𝐱, and control 𝐜,’s input 

ü Forget Gate: control 𝐜,"#
ü Output Gate: control 𝐜,’s output

→ short-term state 𝐡, (Cell’s Output)

ü More parameters to store information

ü Bidirectional:

(1) 𝐱# → 𝐱,
(2) 𝐱, → 𝐱#64-channel Raw EEG Signals

at Time Step x(t)



Attention Mechanism

ü Signals or Outputs 

Equally treated/contributed 

vs.

Differently treated/contributed with preference/importance

𝐔, = tanh(𝐖𝐰𝐲𝐭 + 𝐛𝐰)

𝛂𝐭 =
exp(𝐔,$𝐖𝐔)
∑, exp(𝐔,$𝐖𝐔)

Y𝐔, =C
,

𝛂,𝐲,

Attentional 
Weights

FC Layer

Weighted 
Sum

Image Credit: Prof. Bolei Zhou.
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Model Design Ablation Study



Topological Structure of Features

ü Deep Feature Mining → Intra-feature Relationship → Intra-feature Modeling

(i) 64-channel Raw EEG Signals Acquisition
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(i) 64-channel Raw EEG Signals Acquisition
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Experimental Results - Groupwise Prediction

Note:
(1) Box Plot (Maximum Score, Upper Quartile, Median, Lower Quartile, and Minimum Score)
(2) Confusion Matrix: TP, TN, FP, and FN



Experimental Results - Groupwise PredictionExperimental Results - Subject-Specific Adaptation



Takeaways and Future Work
ü Spatial-Temporal Analysis

(1) Converge to both Subject-level and Groupwise Predictions and handle Individual Variability.

(2) The 0.4-s sample size Time-Resolved Solution toward fast response.

ü Deep Feature Mining

(1) ↑ Highest Accuracy

(2) Advance Clinical Translation of EEG-based BCI technology to meet diverse demands, such as those of paralyzed 

patients.

ü Future Work

Long-range Dependencies among intra-subject or inter-subject EEG signals can be modeled via Non-local Modeling,

Self-attention Mechanism, Transformer, and AI foundation Models.



Thank you!
Any question?
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