Deep Feature Mining via Attention-based BiLSTM-GCN for Human Motor Imagery Recognition

Yimin Hou ¹, Shuyue Jia ^{1, 2*}, Xiangmin Lun ¹, Shu Zhang ³, Tao Chen ¹, Fang Wang ¹, and Jinglei Lv ⁴

¹ School of Automation Engineering, Northeast Electric Power University

² Department of Computer Science, City University of Hong Kong

³ School of Computer Science, Northwestern Polytechnical University

⁴ School of Biomedical Engineering and Brain and Mind Center, The University of Sydney

EEG Deep Learning Library: https://github.com/SuperBruceJia/EEG-DL

Background

- **BCI**: establish connections between the brain and machines
 - (1) Acquire and analyze brain signals while conducting actual or imagery tasks
 - (2) Control machines
- Significance: help the disabled and understand the human brain
- **Types of BCI:**
 - Electroencephalography (EEG)
 - Magnetoencephalography (MEG)
 - Functional Magnetic Resonance Imaging (fMRI)
 - Invasive BCI Technologies (e.g., Neuralink)
- Reasons for using EEG for this project:
 - Non-Invasiveness
 - **High Temporal Resolution**
 - Portability
 - **Inexpensive Equipment**

A potential market

- Specific Task: EEG Motor Imagery (e.g., control a wheelchair via imagery-based EEG signals)
- Our Research: develop EEG-based BCI technologies to improve current stroke rehabilitation strategies

Key Points in dealing with EEG time series

Individual Variability → Lower Classification Accuracy

- ✓ Low SNR
- ✓ Different brain electrical conductivity ← different anatomical structure of brain
- ✓ Electrodes' positional error
- **Slow Responding** → Hard to develop Real-life Applications
 - ✓ [most literature] Trial-level prediction (e.g., 4 s)
 - ✓ Window/Slide-level prediction (e.g., 0.4 s)
 - ✓ Time-resolved prediction (e.g., 6.25 ms) (Our Work)

Lower Group-level Accuracy → Hard to develop Applications for a Group of People

✓ [most literature] Subject-level prediction (Our Work)

✓ Group-level prediction (Our Work)

Feature Extraction

EEG Electrodes'
Structure Modeling

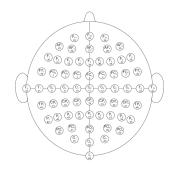
Time-resolved or Window-based

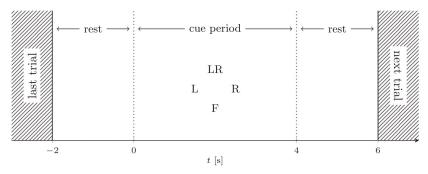
Signal Sampling

Benchmark Dataset

- ► The PhysioNet Dataset (EEG Motor Movement/Imagery Dataset)
- International 10-10 EEG System → 64 electrodes

 (excluding electrodes Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9, and P10)

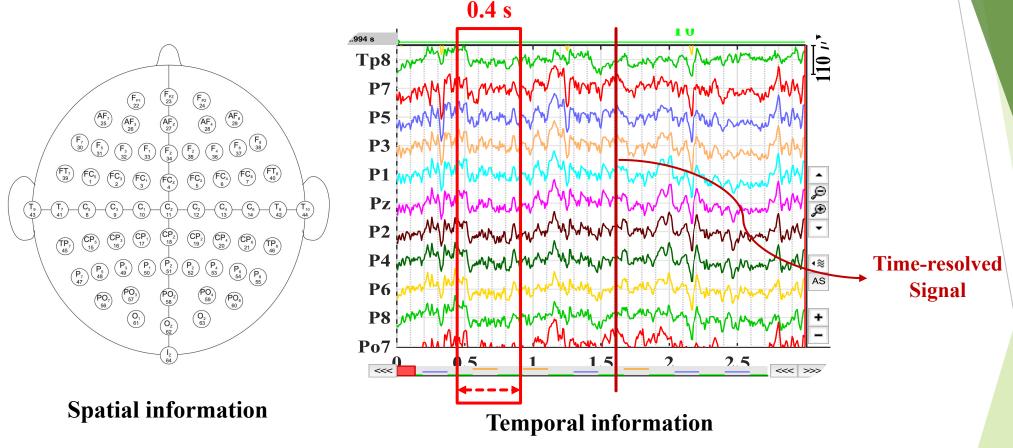




- ▶ 109 subjects (the largest number of participants in the field of EEG Motor Imagery)
- **▶** Task: 4-class EEG Motor Imagery Classification
 - ✓ Imagining (Task 1) left fist, (Task 2) right fist, (Task 3) both fists, (Task 4) both feet
- Each subject \rightarrow 3 runs, 7 trials, 4 classes \rightarrow 84 trials in total
- ► Each trial \rightarrow 4 seconds experimental duration, 160 Hz Sampling Rate \rightarrow 640 Time Points
- **▶** We apply the **Time-resolved Sampling Method**
 - ✓ Total samples per subject: 3 runs \times 7 trials \times 4 classes \times 4 seconds \times 160 Hz = 53,760 samples
 - ✓ Experimental Setting: 90% as the training set and the left 10% as the test set

Image Credit: The PhysioNet Dataset and the middle image is in the public domain.

One Problem of the GCNs-Net

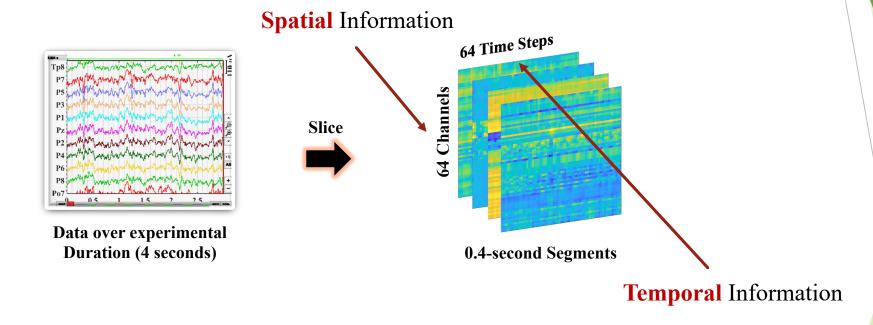


✓ GCNs-Net is based on **Time-resolved Signal** → doesn't consider **Temporal Information**

Motivation

- **✓ [Spatial-Temporal Analysis]** Consider Temporal and Spatial Information from EEG signals
- **✓ [Responsive] Maintain High Responding Time**

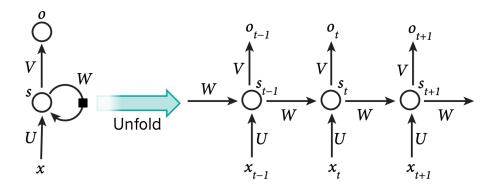
64-channel Raw EEG Signals Acquisition



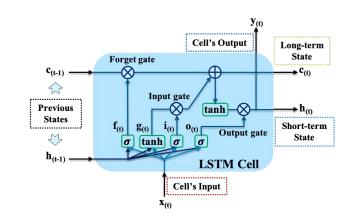
- ✓ 4-s Signals (experimental duration): **0.4-s segments** over time
- \checkmark Each Segment: **64 channels** \times **64 time steps**
- ✓ Pre-processed Data: **Temporal** Information + **Spatial** Information

Temporal Information Extraction

unrolling the network through time



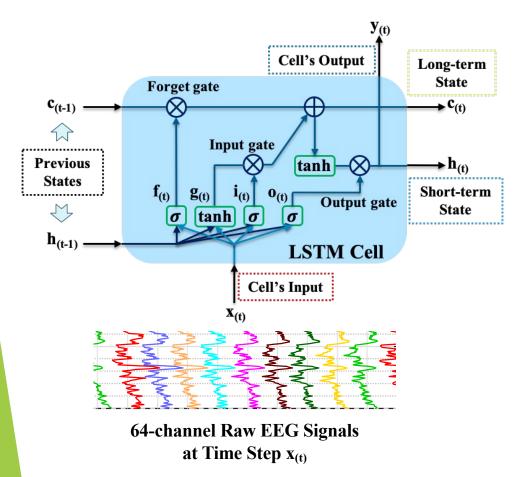
Recurrent Neural Network (RNN)



Long Short-Term Memory (LSTM)

- ✓ Designed for **order-mattered sequential data**, *e.g.*, time series
- ✓ The learned features at *time step t* are affected by \mathbf{x}_t and $\mathbf{x}_{t-1} \to \mathbf{continuly learn}$ from time series
- ✓ LSTM: better capture long-range sequence dependencies
- ✓ Gated Recurrent Units (GRU): lightweight architecture with comparable performance

Long Short-term Memory (LSTM)



- **✓ RNN**: Vanishing Gradient problem
- ✓ LSTM: Capture Long-range Dependencies by the long-term state path $\mathbf{c}_{t-1} \to \mathbf{c}_t$ (improve the gradient flow)
- **✓ Gate**: control information flow
- ✓ Input Gate: store \mathbf{x}_t and control \mathbf{c}_t 's input
- ✓ Forget Gate: control c_{t-1}
- \checkmark Output Gate: control c_t 's output
 - \rightarrow short-term state \mathbf{h}_{t} (Cell's Output)
- More parameters to store information
- ✓ Bidirectional:
 - $(1) \mathbf{x}_1 \to \mathbf{x}_t$
 - $(2) \mathbf{x}_{\mathsf{t}} \rightarrow \mathbf{x}_{\mathsf{1}}$
- ✓ **GRU**: Update Gate, Reset Gate; hidden state

Attention Mechanism

Signals or Outputs

Equally treated/contributed

VS.

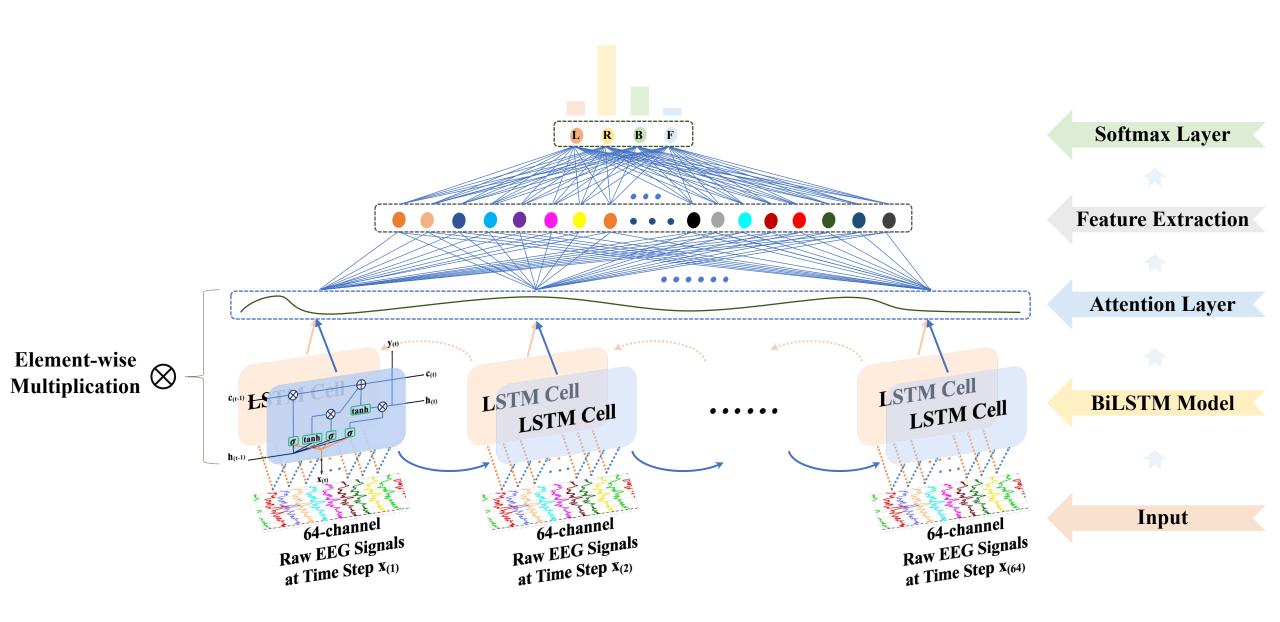
<u>Differently</u> treated/contributed <u>with preference/importance</u>

FC Layer
$$U_t = \tanh(W_w y_t + b_w)$$

Attentional Weights
$$\alpha_t = \frac{\exp(\mathbf{U}_t^T \mathbf{W}_U)}{\sum_t \exp(\mathbf{U}_t^T \mathbf{W}_U)}$$

Image Credit: Prof. Bolei Zhou.

Attention-based Bidirectional Long Short-term Memory (Bi-LSTM)



Model Design Ablation Study

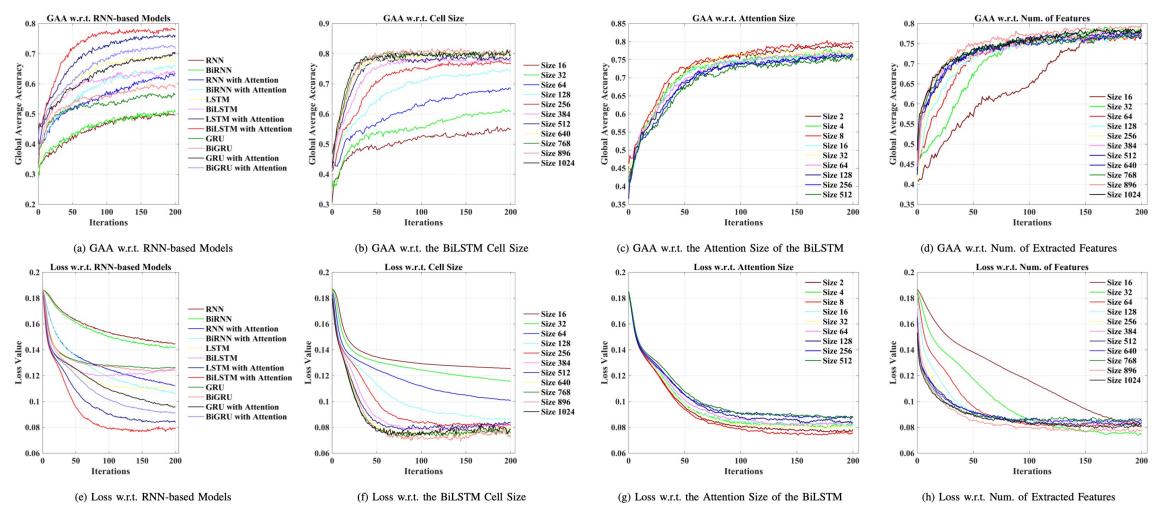
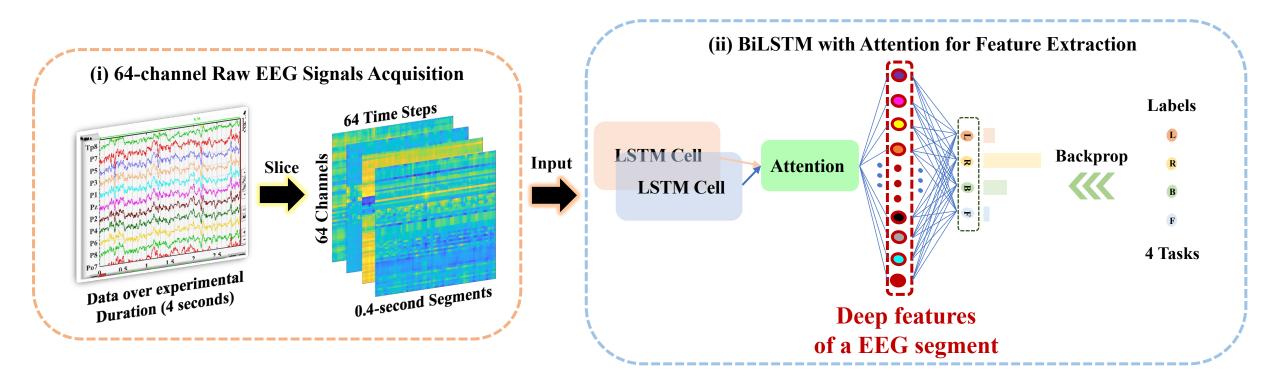
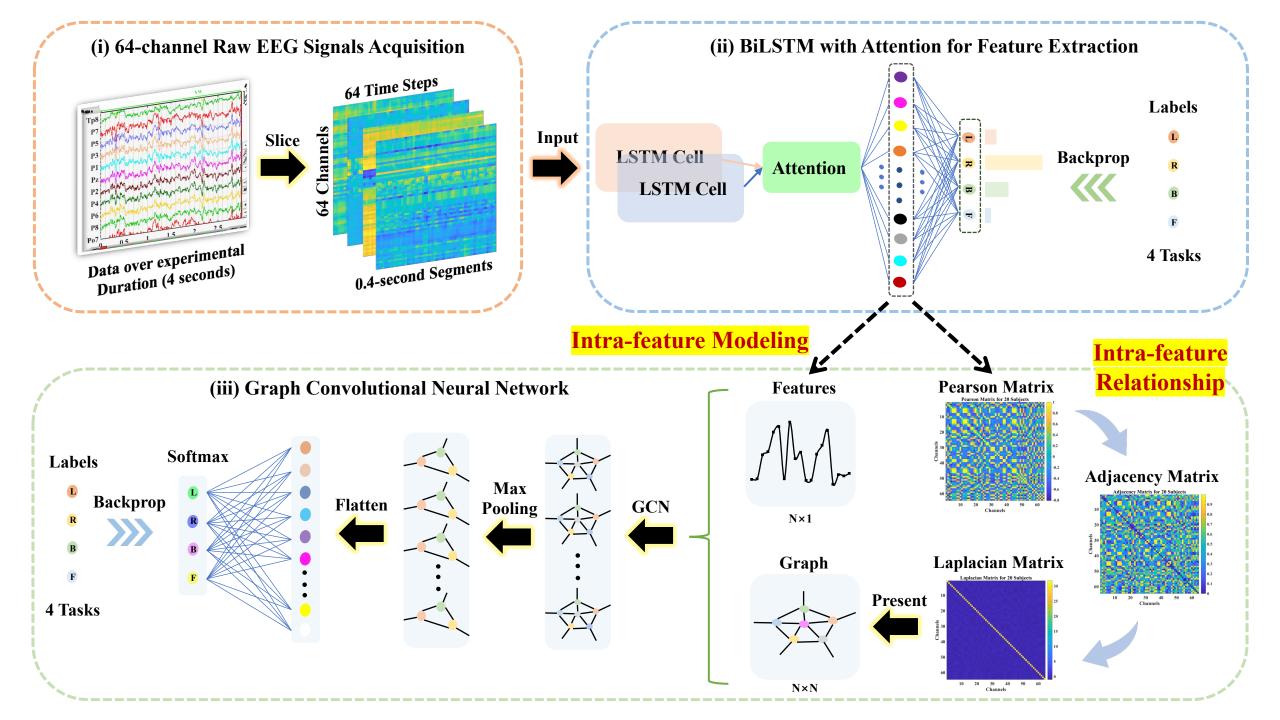


Fig. 3: Models and Hyperparameters Comparison w.r.t. the RNN-based Methods for Feature Extraction

Topological Structure of Features



✓ Deep Feature Mining → Intra-feature Relationship → Intra-feature Modeling



Topological Structure of Features

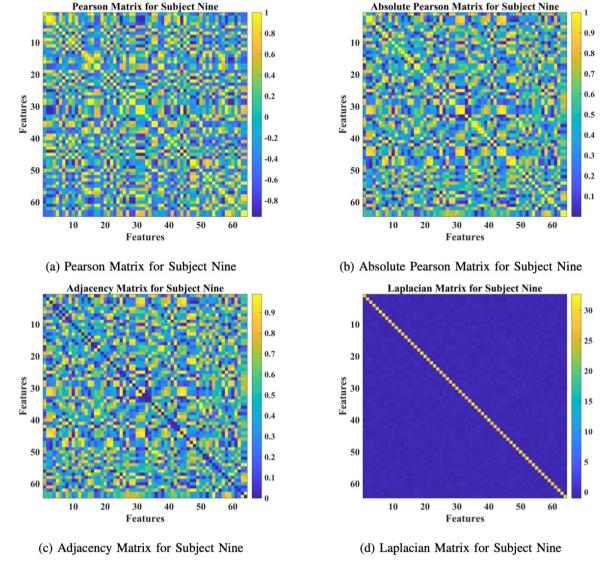


Fig. 4: The Pearson, Absolute Pearson, Adjacency, and Laplacian Matrices for Subject Nine.

Experimental Results - Groupwise Prediction

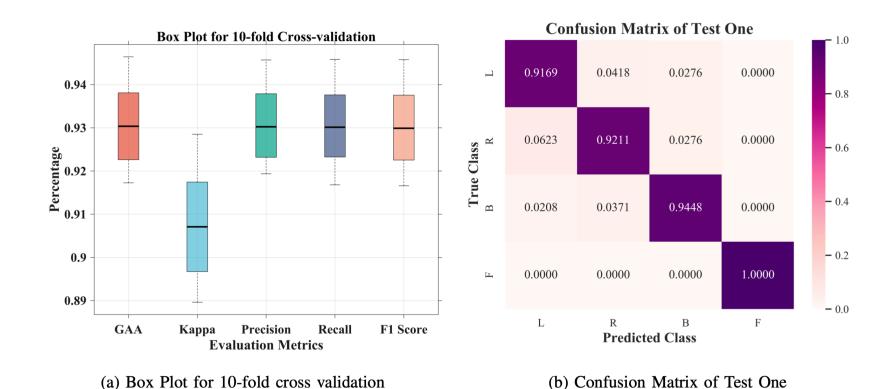


Fig. 5: Box plot and confusion matrix for 10-fold cross validation.

Note:

-) Box Plot (Maximum Score, Upper Quartile, Median, Lower Quartile, and Minimum Score)
- (2) Confusion Matrix: TP, TN, FP, and FN

Experimental Results - Subject-Specific Adaptation

TABLE II: Subject-level Evaluation

No. of Subject	GAA	Kappa	Precision	Recall	F1 Score
1	94.05%	92.06%	94.20%	94.32%	94.16%
2	96.43%	95.19%	96.06%	96.06%	96.06%
3	97.62%	96.79%	97.33%	97.08%	97.18%
4	90.48%	87.34%	91.30%	91.11%	90.42%
5	95.24%	93.61%	95.96%	95.06%	95.38%
6	94.05%	92.02%	93.40%	94.96%	93.66%
7	98.81%	98.40%	98.81%	99.07%	98.92%
8	95.24%	93.60%	95.39%	95.04%	95.19%
9	98.81%	98.39%	99.11%	98.68%	98.87%
10	94.05%	91.98%	93.39%	94.70%	93.61%
Average	95.48%	93.94%	95.50%	95.61%	95.35%

TABLE III: Current studies comparison on subject-level prediction

Related Work	Max. GAA	Approach	Database	
Ortiz-Echeverri et al. (2019)	94.66%	Sorted-fast ICA-CWT + CNNs		
Sadiq <i>et al.</i> (2019)	95.20%	EWT + LS-SVM	BCI Competition IV-a Dataset	
Taran <i>et al.</i> (2018)	96.89%	TQWT + LS-SVM		
Zhang et al. (2019)	83.00%	CNNs-LSTM		
Ji et al. (2019)	95.10%	SVM	BCI Competition IV-2a Dataset	
Amin et al. (2019)	95.40%	MCNNs	-	
Dose et al. (2018)	68.51%	CNNs		
Hou et al. (2019)	96.00%	ESI + CNNs	Physionet Database	
This work	98.81%	Attention-based BiLSTM-GCN		

Takeaways and Future Work

✓ Spatial-Temporal Analysis

- (1) Converge to both **Subject-level and Groupwise Predictions** and handle **Individual Variability**.
- (2) The 0.4-s sample size <u>Time-Resolved Solution</u> toward fast response.

✓ Deep Feature Mining

- (1) ↑ Highest Accuracy
- (2) Advance <u>Clinical Translation</u> of EEG-based BCI technology to meet diverse demands, such as those of paralyzed patients.

✓ Future Work

Long-range Dependencies among intra-subject or inter-subject EEG signals can be modeled via Non-local Modeling, Self-attention Mechanism, Transformer, and AI foundation Models.

Thank you!

Any question?