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: Image quality collected from human subjects (observers)
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Problem Definition &
Definitions
: images captured by optical cameras
: keep the of the distorted images (semantic information) unchanged
: measure the input image’s
: people’s overall when viewing images
: synthetic distortions added to the whole area of image ( )

:images captured in the wild include and

( )

Image Quality Assessment Category
: with Reference/Pristine Image
- with partial information from Reference Image, e.g., a subset of features
: without any information from Reference Image

Measurements
: Mean Opinion Score (MQS) vs. : one scalar score
: prediction accuracy

: prediction monotonicity Image Credit: Prof. Zhou Wang



Why do we need Image Quality Assessment?
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Image Credit: Shuyue Jia and Ka-Po Chan
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Why do we need Image Quality Assessment? &

Performance Evaluation of Image Processing Systems
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Image Credit: TID2013 Database
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Credit: Ling et al., Predictive Coding Based Multiscale Network with Encoder-Decoder LSTM for Video Prediction, Under Review

Predictive Coding Based Multiscale Network with EncoderDecoder LSTM for Video Prediction
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Fig. 6. Visualization examples on the KTH datasets. We use 10 frames as
input to predict next 30 frames. The other results are obtained from [49].
Zoom in for a better view.

Fig. 7. Visualization examples on the MNIST datasets. We use 10 frames
as input to predict next 10 frames. In each group, the first row indicates the

B. Experimental results

KTH The KTH is one of the most commonly used
datasets for task of video prediction. It is very popular due
to its moderate complexity of scene and event (the dataset
contains only 6 action categories on a simple backgrounds).
Similar to previous works, we use person 1-16 for training and
person 17-25 for testing, and use 10 frames as input to predict
the next 30 frames. The quantitative evaluation results are
shown in Table II. The results of previous works are excerpted
from [25], [48] and [49]. As shown in the table, our method
achieve comparable or better performance compared with the
state-of-the-art methods. In addition, our model converges
fast, which only takes about 30 epochs to achieve good
performance. Figure 6 shows the visualization examples, our
method can also achieve good visual results, while the Conv
TT-LSTM [50], which obtains the highest SSIM score, shows

poor performance on the qualitative evaluation. The mismatch
between quantitative and qualitative assessments remains an
unsolved problem for video prediction tasks.

ground truth frames and the second row indicates predicted frames. Zoom in
for a better view.

oving MNIST The Moving MNIST is an early popular
synthetic dataset for video representation learning. Its scenar-
vents are very simple, each sequence is 20 in length
and shows how 2 digits move at a constant speed and bounce
within a 64*x 64 box. Similarly, we use 10 frames as input
to predict the next 10 frames. Table III shows the quantitative
evaluation results on SSIM and MSE, the results of previous
works are excerpted from [57] and [48]. Figure 7 shows the
vjsualization examples, we have tried our best to search the
emonstrated examples of previous works, but unfortunately
one have been found, so we only present our results in the
figure. Since the scenes and events are simple, we did not
use adversarial training to sharpen the generated images to
save training overhead. Nevertheless, we can still achieve good
performance from the perspective of qualitative evaluation.
Actually, most of the background pixels in this dataset are
zeros. If we set a threshold and change the predicted pixels
smaller than the threshold to zeros, we will get higher accuracy
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Optimizing Image Processing Systems (Model Parameter Optimization)
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Image Credit: TID2013 Database
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G
Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR)
L,: number of pixels in the image; x; and y; are the itpixels of the ref. and dis.
I
1% ) 2552
MSE = —Z(xi —yi)“, PSNR = 10X log;, ;
L, MSE
i=1
. ( )
separately model each basic module of Human Visual System (HVS)
Image Credit: = )
SSIM Paper

Fig. 1. A prototypical quality assessment system based on error sensitivity. Note that the CSF feature can be implemented either as a separate stage (as shown)

( P rof Zhou Wa n g ) or within “Error Normalization.”
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directly imitate the function of HVS as a

Representative Work:
(1) Structural Similarity (SSIM)
(2) Visual Information Fidelity (VIF)
(3) Learned Perceptual Image Patch Similarity (LPIPS)
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* Top-Down Approaches - Structural Similarity (SSIM)

Luminance

Signal x I Measurement I
G Luminance
+ Comparison
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Signal Luminance Comparison Measure
gnaty Measurement
Structure
Contrast Comparison
Measurement
FIGURE 5 Separation of luminance, contrast and structural changes from a reference
e image x in the image space. This is an illustration in three-dimensional space. In practice,

the number of dimensions is equal to the number of image pixels.

Fig. 3. Diagram of the structural similarity (SSIM) measurement system.

w: Mean Intensity -
(Zﬂxﬂy + C1)(20xy + C3) o: Standard Deviation -

M2+ u2 + C) (02 + 02+ C;) (X~ py)/0y: normalization
Correlation of Normalized Signals -

Credit: Wang et al., Image Quality Assessment: From Error Visibility to Structural Similarity, In IEEE T-IP’04

SSIM(x,y) =
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* Top-Down Approaches - Visual Information Fidelity (VIF)

Human Visual System Model

Natural image Channel
source (Distortion)

Source Model  Distortion Model
Fig. 1. Mutual information between C and £ quantifies the information that

the brain could ideally extract from the reference image, whereas the mutual
information between C and F quantifies the corresponding information that
could be extracted from the test image.

Credit: Sheikh et al., Image Information and Visual Quality, In IEEE T-IP’06 and Netflix VMAF System (Prof. Jay Kuo, USC)
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e Top-Down Approaches - Learned Perceptual Image Patch Similarity (LPIPS)

Multiply
L2 norm

Computing Distance Predicting Perceptual Judgement

Figure 3: Computing distance from a network (Left) To compute a distance dy between two patches, x, ¢, given a network
F, we first compute deep embeddings, normalize the activations in the channel dimension, scale each channel by vector w,
and take the /5 distance. We then average across spatial dimension and across all layers. (Right) A small network G is trained
to predict perceptual judgment A from distance pair (do, d1).

Based on instead of Statistics

Credit: Zhang et al., The Unreasonable Effectiveness of Deep Features as a Perceptual Metric, In CVPR’18



https://openaccess.thecvf.com/content_cvpr_2018/papers/Zhang_The_Unreasonable_Effectiveness_CVPR_2018_paper.pdf

[DISTS] Image Quality Assessment- Unifying Structure and Texture Similarity + p|Ctu
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This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3045810, IEEE b e
Transactions on Pattern Analysis and Machine Intelligence Aienl
SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1 ayed

Image Quality Assessment: Unifying Structure Fape:
and Texture Similarity o

Keyan Ding, Kede Ma, Member, IEEE, Shiqi Wang, Member, IEEE, and Eero P. Simoncelli, Fellow, IEEE

Abstract—Objective measures of image quality generally operate by making local comparisons of pixels of a “degrade” image to those
of the original. Relative to human observers, these measures are overly sensitive to resampling of texture regions (e.g., replacing one
patch of grass with another). Here we develop the first full-reference image quality model with explicit tolerance to texture resampling.
Using a convolutional neural network, we construct an injective and differentiable function that transforms images to multi-scale
overcomplete representations. We empirically show that the spatial averages of the feature maps in this representation capture texture
appearance, in that they provide a set of sufficient statistical constraints to synthesize a wide variety of texture patterns. We then
describe an image quality method that combines correlation of these spatial averages (“texture similarity”) with correlation of the
feature maps (“structure similarity”). The parameters of the proposed measure are jointly optimized to match human ratings of image
quality, while minimizing the reported distances between subimages cropped from the same texture images. Experiments show that
the optimized method explains human perceptual scores, both on conventional image quality databases, as well as on texture
databases. The measure also offers competitive performance on related tasks such as texture classification and retrieval. Finally, we
show that our method is relatively insensitive to geometric transformations (e.g., translation and dilation), without use of any specialized
training or data augmentation. Code is available at https:/github.com/dingkeyan93/DISTS|

Index Terms—Image quality assessment, structure similarity, texture similarity, perceptual optimization.

<+

Extension: Ding et al., Comparison of Full-Reference Image Quality Models for Optimization of Image Processing Systems, In IJCV’21
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eI NelfellReduced-Reference IQA

Sender Side Receiver Side
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- . Image/
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RR RR Side
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Extraction Channel

[FIG2] General framework of an RR image or image QA system.

Credit: Wang et al., Reduced- and No-Reference Image Quality Assessment, In IEEE Signal Processing Magazine’11
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» Distortion-Specific Modeling
aware the image distortion types — build distortion-specific models

* General NR-IQA Modeling

(1) Natural Scene Statistics Modeling
Spatial Domain and Transform Domain

(2) Human Visual System Modeling
CNN modeling methods, assisted with visual importance information,
reference images’ information during training, ranking-based methods, graph
representation learning, etc.

(3) Codebook-based Modeling
constructing a codebook
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https://ieeexplore.ieee.org/document/8063957
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Challenges

Input Image Convolutional Neural Networks

Local Modeling (Convolutional Neural Networks):
v’ Translation Invariance (Pooling)
v’ Translation Equivalence (Convolution)

v’ Sharable Fewer Parameters (Weight Sharing)
Limitations:

v Small-sized Receptive Field = Extracted features are too local
v’ Parameters Fixed across the whole image - Image content is equally treated

v’ Lack of Geometric and Relational Modeling - Missing complex relations and dependencies



Motivation

Non-local

Local Feature Dependency

Extraction

v HVS is adaptive to the local content

— Local feature extraction via a pre-trained CNN

v" HVS perceives image quality with long-range dependency constructed among different regions

— Non-local feature extraction for long-range dependency and relational modeling

Image Credit: LIVEC and TID2013 Databases



Non-Local:

Definition Object-to-Pixel

Modeling

Spatial Integration of Information

h§=ELU<z

afleh]l)
JEN (1)

Spatial Weighting Functions

.

o T i —

l
. " , ol = exp(a;)
x b=
Convolution: @ ~Norriodal cagendensy = T Zrewe
- " Local feature extraction is critical P y
Pixel-to-Pixel learned by the NLNet ;L e e
Modeling Figure 2: Local region feature extraction and non-local djj = LeakyReLU(FC([W'h; | W hj]))

dependency feature extraction

v Local Modeling: encodes spatially proximate Local Neighborhoods.
v" Non-local Modeling: establishes Spatial Integration of Information by Long- and
Short-Range Communications with different Spatial Weighting Functions.

Image Credit: TID2013 and LIVEC Databases



Non-local Behavior

(a) | (b) - ' © ‘ @)
Object-to-Pixel Modeling
Region Feature Extraction

T

Non-local
Dependency & Relational
Modeling
@ © ®
Semant|CS and Content Figure 3.1: The non-local behavior of the long-range dependency and relational
. modeling. (a) The plane image with a query on wings. (b) The boat image with a query
U nderStand | ng on nearby river bank. (c) The Statue of Liberty image with a query on the lady. (d) The
shrooms image with a query on one shroom. (e) The butterfly image with a query on
the wing. (f) The Lafayette Square, Washington, D.C. image with a query on flowers. (m) (n) (0) (p)

Figure 3.2: Selected demonstrations of the non-local behavior and long-range
dependencies with regard to the cropped image patches from the illustrated images.
The details of Figure (a) to (p) are described in the thesis.

v" Non-local Modeling: establishes the Spatial Integration of Information by Long- and Short-

Range Communications with different Spatial Weighting Functions.
Image Credit: TID2013 and LIVE Databases

© Philips - Confidential



Definition

Non-Local Recurrence

(© ® (® (b)

Figure 4.9: Demonstrations of the global distortions (b/f: GB, c¢/g: CC, d/h: PN) . . o -
. . R R Figure 4.11: Demonstrations of the local distortions (b/e/h: non-eccentricity patch and
contaminating the Statue of Liberty and George Rogers Clark Memorial images. c/ffi: color block). Figure (a), Figure (d), and Figure (g) are reference images from the
Figure (a) and Figure (e) are reference images from the CSIQ database. KADID-10k database.

Global Distortion Local Distortion

Global Distortion: globally and uniformly distributed distortions with non-local recurrences over the image.

Local Distortion: local nonuniform-distributed distortions in a local region.

Image Credit: CSIQ and KADID-10k Databases

© Philips - Confidential



Superpixel Segmentation

L4H Superpixel vs. Square Patch

2 v Adherence to boundaries and visually meaningful

v’ Accurate feature extraction

@
Figure 4.2: The superpixel vs. square patch representation (with size of ~ 32 x 32) of
the plane image from the TID2013 database.

© Philips - Confidential

Image Credit: TID2013 Database



Superpixel Segmentation

Reference

Gaussian Blur

Gaussian Noise

Figure 4.2: The superpixel vs. square patch representation (with size of ~ 32 x 32) of
the plane image from the TID2013 database.

© Philips - Confidential

Image Credit: TID2013 Database



Superpixel Segmentation
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- Gaussian Blur
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Figure 4.2: The superpixel vs. square patch representation (with size of ~ 32 x 32) of
the plane image from the TID2013 database.

) © Philips - Confidential
Image Credit: TID2013 Database



NLNet
Architecture

The Evaluated Image

(i) Image Preprocessing

Image Credit: TID2013 Database

Input

Superpixel

® Stage One:
Local Feature
Aggregation -

Stage Two:
. Non-Local Feature
Inp.ut Patch with . h A o Aggregation
Superpixel Segmentation ‘oo e e

(i) Graph Neural Network — Non-Local Modeling Method One GNN Layer and the GNN module

(iv) Feature Mean & Std Fusion and Quality Prediction
Distortion Type

Identification Loss L, Quality Pridiction Loss Quality Ranking Loss L, Inference — Final Quality Prediction
q e dm
®1 -
FC

Image Pair st & |/ Qout
i Rank “ Average

Input Patch (iii) Pre-trained VGGNet-16 — Local Modeling Method



Experimental Setup

Natural
Images

Databases:

v' LIVE, CSIQ, TID2013, and KADID-10k

Experimental Settings:

v’ Intra-Database Experiments:

- 60% training, 20% validation, and 20% testing, with ‘random’

seeds from 1 to 10 © @
Figure 1.1: Natural images and a screen content image from the constructed databases.
- The median SRCC and PLCC are reported. (a) LIVE Database [13] (b) CSIQ Database [14] (c) TID2013 Database [15] (d)

KADID-10k Database [16].

v’ Cross-Database Evaluations:

Table 4.1: Brief summary of the LIVE, CSIQ, TID2013, and KADID-10k databases.
— One database as the training set, and the other databases as

the testing set Database LIVE [13] CSIQ[14] TID2013[15] KADID-10k [16]
- Report the last epoch’s performance Num. of Reference Images 29 30 25 81
Num. of Distorted Images 779 866 3,000 10,125
Num. of Distortion Types 5 6 24 25
Num. of Distortion Levels 5~8 3~5 5 5
Annotation DMOS DMOS MOS MOS

Range [0, 100] [0, 1] [0, 9] [1,5]




Intra-Database Experiments

Table 4.2: Performance comparisons on the LIVE, CSIQ, and TID2013 databases.
Top two results are highlighted in bold.

LIVE CSIQ TID2013
SRCC PLCC SRCC PLCC SRCC PLCC

Method

BRISQUE (2012) [10] 0939 0.935 0.746 0.829 0.604 0.694
CORNIA (2012) [104] 0947 0950 0.678 0.776 0.678 0.768

M3 (2015) [105] 0951 0950 0.795 0.839 0.689 0.771
HOSA (2016) [103] 0946 0947 0.741 0.823 0.735 0.815
FRIQUEE (2017) [90]  0.940 0.944 0.835 0.874 0.68 0.753
DIQaM-NR (2018) [35] 0.960 0.972 - - 0.835 0.855

DB-CNN (2020) [64] 0968 0971 0.946 0.959 0.816 0.865
HyperIQA (2020) [65] 0.962 0.966 0.923 0942 0.729 0.775
GraphIQA (2022) [86]  0.968 0.970 0.920 0.938 - -

SOTA mom s — == — e m s e o=

LIReS 022 [87]_ _ _ 0969 0968 _0.922 08831 Fewer Training Data
Transformer “g\g 0962 0963 C0.941 0.958 0.856 0.88 | 20% Total Data

T Highly Competitive Performance

Table 4.3: Performance comparisons on the KADID-10k database.

Top two results are highlighted in bold.
L~ "9 /N

Method BRISQUE [10] CORNIA [104] HOSA [103] InceptionResNetV2[16] DB-CNN [64] HyperIQA [65] :TReS [87] {NLNet\

SRCC 0.519 0.519 0.609 0.731 0.851 0.852 I 0859 0.846
PLCC 0.554 0.554 0.653 0.734 0.856 0.845 1 0.858 1 0.850




Cross-Database Settings and Evaluations

Table 4.9: Cross-database performance comparisons.

Training LIVE CSIQ TID2013
Testing CSI 2013 ( LIVE 2013 \LIVE CSI

BRISQUE (2012) [10] 0.562 0358  0.847  0.454  0.790 0.590
CORNIA (2012) [104] 0.649 0360 0853 0312  0.846 0.672
M3(2015)[105]  0.621 0344 0797 0328 0.873 0.605
HOSA (2016) [103] 0594 0361 0.773 0329  0.846 0.612
FRIQUEE (2017)[90] 0.722 0461 0879 0463  0.755 0.635
DIQaM-NR (2018) [35] 0.681  0.392 . - - 0717
DB-CNN (2020) [64] 0758  0.524 0877 0.540  0.891 0.807
HyperlQA (2020) [65] 0697 0.538 _0.905 ~ 0.554  0.839_0.543

NLNet ! 0.771 | 0.497 ! 0923 1 0.516 :0.895 0.7301
Similar . TII?:
Distortions More Distortion Types &

Levels



Single Distortion Type Evaluation

Table 4.4: The average SRCC and PLCC results of the individual distortion type on
the LIVE database. Top two results are highlighted in bold.

SRCC | Global Distortion Local Distortion NOisy
EG JP2K Wﬂ) <QB FF and :. e )
BRISQUE (2012) [10] | 0.965 0929 0982 0.964 0828 C di | B
CORNIA (2012) [104] | 0.947 0.924 0.958 0.951 0.921 ompresse E E
M3 (2014) [105] | 0.966 0.930 0.986 0.935 0.902 Images : :
HOSA (2016) [103] | 0.954 0.935 0.975 0.954 0.954 E E
FRIQUEE (2017) [90] | 0.947 0.919 0.983 0.937 0.884 - .
dipIQ (2017)[82] | 0.969 0.956 0.975 0.940 - : :
WaDIQaM (2018) [35] | 0.953 0.942 0.982 0.938 0.923 Global : :
DB-CNN (2020) [64] | 0.972 0.955 0.980 0.935 0.930 Distortion E E
HyperIQA (2020) [65] | 0.961 2 092G 034 ! :
NLNet L0.979 0.958 0.990 : 0.96D 0.941 N on _l ocal i E
PLCC IM Local Distortion Recurrence :_‘ ::
JPEG JP2K WN GB FF “.
BRISQUE (2012) [10] | 0.971 0.940 0.989 0.965 0.894 [CTTTFTPRARNC R
CORNIA (2012) [104] | 0.962 0.944 0.974 0.961 0.943 Local
M3 (2014) [105] 0.977 0.945 0.992 0.947 0.920 DiStOI’tion N 0T
HOSA (2016) [103] | 0.967 0.949 0.983 0.967 0.967
FRIQUEE (2017) [90] | 0.955 0.935 0.991 0.949 0.936
dipIQ (2017) [82] 0.980 0.964 0.983 0.948 -
DB-CNN (2020) [64] | 0.986 _0.967_0.988  0.956 0.961
i
NLNet I| 0.986 0.961 0.993 : 0.964 0.951 Figure 4.7: Demonstrations of the global distortions (b/f: WN and c/g: JPEG) and
e —— local distortions (d/h: FF) contaminating the plane and parrot images. Figure (a) and

O Philips - Confidential

Image Credit: LIVE Database Figure (e) are reference images from the LIVE database.



Noise-Related
Distortions

Single Distortion Type Evaluation

Table 4.5: The average SRCC and PLCC results of the individual distortion type on
the CSIQ database. Top two results are highlighted in bold.

SRCC

| IPEG

JP2K

WN

GB

PN

CcC

BRISQUE (2012) [10]
CORNIA (2012) [104]
M3 (2014) [105]
HOSA (2016) [103]
FRIQUEE (2017) [90]
dipIQ (2017) [82]
MEON (2018) [71]
‘WaDIQaM (2018) [35]
DB-CNN (2020) [64]
HyperIQA (2020) [65]

0.806
0.513
0.740
0.733
0.869
0.936
0.948
0.853
0.940

NLNet
PLCC

0.840
0.831
0911
0.818
0.846
0.944
0.898
0.947
0.953

0.723
0.664
0.741
0.604
0.748
0.904
0.951
0.974
0.948

0.820
0.836
0.868
0.841
0.870
0.932
0918
0.979
0.947

0.378
0.493
0.663
0.500
0.753

0.882
0.940

0.804
0.462
0.770
0.716
0.838

0.923
0.

BRISQUE (2012) [10]
CORNIA (2012) [104]
M3 (2014) [105]
HOSA (2016) [103]
FRIQUEE (2017) [90]
dipIQ (2017) [82)
MEON (2018) [71]

DB-CNN (2020) [64]

NLNet

Image Credit: CSIQ Database

0.496
0.632
0.717
0.601
0.769

Q991 0.976 0.962) 0.9746 {0.966 ) 0.969,

Global
Distortion

(e ® ® (b)

Figure 4.9: Demonstrations of the global distortions (b/f: GB, c/g: CC, d/h: PN)
contaminating the Statue of Liberty and George Rogers Clark Memorial images.
Figure (a) and Figure (e) are reference images from the CSIQ database.

Philips - Confidential



Single Distortion Type Evaluation

Table 4.6: The average SRCC results of the individual distortion type on the TID2013
database. Top two results are highlighted in bold.

SRCC Distortion Type ‘ BRISQUE [10] FRIQUEE [90] HOSA [103] MEON [71] M3 [105] DB-CNN [64] CORNIA [104] ‘ NLNet
Additive Gaussian noise 0.711 0.730 0.833 T8_4‘V&1 3 0.766 0.790 0.692 0.917
Lossy compression of noisy images 0.609 0.641 0.838 0.772 0.692 0.860 T 7. 5°/°0.712 0.935
Additive noise in color components 0432 0.573 0.551 0.722112 894, 0.700 0.137 0.850
Comfort noise 0.196 0.318 0.622 0.406 0.353 0.752T1 1 . 8%617 0.870
Contrast change -0.001 0.585 0.362 0.252 0.155 0.548 0.254 0.793
Change of color saturation 0.003 0.589 0.045 0.684 -0.199 0.631 0.169 0.827
Spatially correlated noise 0.746 0.866 0.842 0.926 1 3. 20/ig2 0.826 0.741 0.958
High frequency noise 0.842 0.847 0.897 0.911 710890 0.879 0.815 0.921
Impulse noise 0.765 0.730 0.809 0.901 1 mgS 0.708 0.616 0.913
Global Quantization noise 0.662 0.764 0.815 0.888 4 1(%2 0.825 0.661 0.929
Distortion Gaussian blur 0.871 0.881 0.883 0.887 0.896 0.859 0.850 0.912
Image denoising 0.612 0.839 0.854 0.797 0.709 0.865 T1.7%0.764 0.882
JPEG compression 0.764 0.813 0.891 0.850 0.844 0.894 1 1.1%0.797 0.905
JPEG 2000 compression 0.745 0.831 0.919 T1 1 Yso1 0.885 0.916 0.846 0.930
Multiplicative Gaussian noise 0.717 0.704 0.768 084915, 5%8 0.711 0.593 0.904
Image color quantization with dither 0.831 0.768 0.896 0.857 0.908 0.833 0.683 0.911
Sparse sampling and reconstruction 0.807 0.891 0.909 0.855 0.893 0.902 0.865 0.940
Chromatic aberrations 0.615 0.737 0.753 0.779 0.570 0.732 0.696 0.773
Masked noise 0.252 0.345 0.468 0.728 0.577 0.646 0.451 0.700
Mean shift (intensity shift) 0.219 0.254 0.211 0.177 0.119 -0.009 0.232 0.358
JPEG transmission errors 0.301 0.498 0.730 0.746 0.375 0.772 T 3 . 30/00,694 0.805
Local JPEG 2000 transmission errors 0.748 0.660 0.710 0.716 0.718 0.773 T1 o . 2?0686 0.875
Distortion Non eccentricity pattern noise 0.269 0.076 0.242 0.116 0.173 0.270 T3 4_ 6!?0200 0.616
Local bock-wise distortions with different intensity 0.207 0.032 0.268 0.500 0.379 0.444 0.027 0.493

Noise and Compression-Related Distortions

Figure 4.10: Demonstrations of the local distortions (b/g/l: JPEG transmission errors,
c/h/m: JPEG2000 transmission errors, d/i/n: non eccentricity pattern noise, e/j/o: local
block-wise distortions of different intensity). Figure (a), Figure (f), and Figure (k) are

Image Credit: TID2013 Database reference images from the TID2013 database.



Table 4.7: The average SRCC results of the individual distortion type on the
KADID-10k database. The local distortions are highlighted in blue and the top two
results are highlighted in bold.

Single Distortion Type Evaluation

Distortion Type ‘ BLIINDS-II [91] BRISQUE [10] ILNIQE[102] CORNIA [104] HOSA [103] WaDIQaM [35] ‘ NLNet
Lens blur 0781 0.674 0.846 0811 0715 0.730 0914
Blurs Gaussian blur 0.880 0.812 0.883 0.866 0.852 0.879 0914
Motion blur 0482 0423 0.779 0532 0.652 0.730 0.899
Color diffusion 0572 0544 0.678 0243 0727 0.833 0916
Color saturation 2 0.602 0375 0.677 0.120 0.841 0.836 0.909
Color distortions Color quantization 0.670 0.667 0.676 0.323 0.662 0.806 0.853
Color shift 0.139 -0.182 0.090 -0.002 0.050 0.421 0.777
o - el AlOT A Al Gl e e [ ) 0 e e e o) T e e R e e ) L e e )2 e e ) S e e (0,
4 Commrestion JPEG compression 0414 0782 0.804 16.2%.556 0.582 0530 0.866
1 P JPEG 2000 compression 0.655 0516 0790 16 399342 0.608 0.539 0.853
| Denoise 0457 0221 0856 19,7229 0247 0.765 0.953
1 White noise in color component 0.757 0.718 0.841 0.418 0745 11.1%0.925 0936
1 Noise Multiplicative noise 0702 0.674 0.682 0306 0776 15.0%0.884 0934
I Impulse noise 0.547 -0.543 0.808 0219 0254 110.2%.814 0916
te Gaussian noise . .7 .77 .357 X 700 X
\ White Gaussian noi 0.628 0.708 0.776 0.35 0.680 11.7%0.897 0914
e e e e e o e e (S B e e S e e
Brightness change Darken 0439 0.405 0436 0206 0.744 0272 0.647
Mean Shift 0.112 0.144 0315 0.122 0591 0348 0.335
Jitter 0.629 0.672 0441 0719 0391 0.778 0.899
Pixelate 0.196 0.648 0577 0.587 0.702 0700 0.814 4 O, ’ X
Spatial distortions Quantization 0.781 0714 0571 0259 0.681 0735 0.791 ® (h) 6]
Color block -0.020 0.067 0.003 0.094 0.388 0.160 0.440 g
Non-eccentricity patch 0.083 0.191 0218 0.121 0.461 0348 0433 . ; : . -,
siibeoscnmil o Figure 4.11: Demonstrations of the local distortions (b/e/h: non-eccentricity patch and
High sharpen -0.015 0361 0.681 0114 0230 0558 0932 . . . . .
s d contrast c/f/i: color block). Figure (a), Figure (d), and Figure (g) are reference images from the
barpnessjand confres Contrast change 0.062 0.105 0.072 0.125 0.452 0421 0513 ). Figure (a), Figure (d), gure (g) 8

KADID-10k database.

Image Credit: KADID-10k Database



Takeaways and Future Work

v Non-local & Local Modeling

(1) The Non-local Modeling is complementary to traditional local methods.

(2) CNN’s Local Modeling features are effective and robust.

v Global & Local Distortions

(1) Handle a wide variety of Global Distortions: globally and uniformly distributed with non-local recurrences.

(2) Maintain sensitivity to Local Distortions: local nonuniform-distributed distortions in a local region.

(3) Better assess Noisy and Compressed Images quality.

v Generalization Capability Cross-Dataset Setting - High Generalization Capability

v’ Future Work Non-local Statistics [1, 2]; PGC = UGC - AIGC: Quality Assessment of Al Generated Content

Credit:

[1] Zontak et al., Internal Statistics of a Single Natural Image, In CVPR 2011
[2] Buades et al., A Non-local Algorithm for Image Denoising, In CVPR 2005
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