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Learning
Objectives

• How LLMs store Factual Knowledge/Associations?

• How to edit LLMs to generate Factual Recall?

• Factual Consistency, Generation Fluency, and Specificity

Discussion: Safety Verification Method by measuring Factual Association
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Preliminary – Factual Hallucination

Intrinsic: contradict the source content

Extrinsic: cannot be verified from the source content / irrelevant to the input 

𝐿!" 𝑝 ≔ 𝔼#~% %
&'(

)

−log 𝑝 𝑥&|𝑥*&

Image Credit: Ref. [2] and Reference of Hallucination: Ref. [1]
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Background

Image Credit: Shuyue Jia
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Eiffel Tower is located in the city of Las Vegas
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Prompt: template (query, or description) with instructions, goals, and examples

Image Credit: Shuyue Jia



© Philips - Confidential

Background

Eiffel Tower is located in the city of Las Vegas

Prompt

Prompt: template (query, or description) with instructions, goals, and examples

Image Credit: Shuyue Jia



© Philips - Confidential

Background

Eiffel Tower is located in the city of Las Vegas

Prompt

Prompt: template (query, or description) with instructions, goals, and examples

Image Credit: Shuyue Jia



© Philips - Confidential

Background

Eiffel Tower is located in the city of Las Vegas

Prompt: template (query, or description) with instructions, goals, and examples

Image Credit: Shuyue Jia



© Philips - Confidential

Background

Eiffel Tower is located in the city of Las Vegas
Subject

Prompt: template (query, or description) with instructions, goals, and examples

Image Credit: Shuyue Jia



© Philips - Confidential

Background
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Subject Relation
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Background

Eiffel Tower is located in the city of Las Vegas
Subject ObjectRelation

Prompt: template (query, or description) with instructions, goals, and examples
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Background

Eiffel Tower is located in the city of Las Vegas
Subject ObjectRelation

Counterfactual

Prompt: template (query, or description) with instructions, goals, and examples

Image Credit: Shuyue Jia
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Background

Eiffel Tower is located in the city of Paris

Factual Association

Proposal: Safety Verification of LLMs

Measure the Consistency of Factual Associations

Eiffel Tower is located in the city of Las Vegas

Counterfactual Association
Paris

Vegas

Image Credit: Shuyue Jia and Open Domain (Paris ET Image)
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Generating Factual Information is critical to 
Safety-demanding Systems! 

Image 
Credit:
Ref. [3]
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Preliminary – Tokenization and Word Embedding

• Tokenization: how a string is split into tokens.

e.g., [Biden is the U.S. president]

Word → [“Biden”, “is”, “the”, “U.S.”, “president”]

Subword → [“Bi”, “den”, “is”, “the”, “US”, “pre”, “si”, “dent”] (GPT: BPE/Jurassic: SentencePiece)

• Word Vector/Embedding: Word / Subword → Vector Representation
Presentation: Subword Generation by Byte Pair (2-gram) Encoding (BPE) Algorithm

Skip-gram Word2Vec

Image Credit: Ref. [2]

https://stanford-cs324.github.io/winter2022/lectures/modeling/
https://shuyuej.com/files/NMT-Subword-Unites.pdf
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Preliminary – Transformer

Image Credit: Attention is all you need
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Preliminary – Transformer

Global Attention 𝐚+
(&)

Local MLP 𝐦+
(&)

Image Credit: Attention is all you need
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Preliminary – Transformer
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Specific Hidden State

Key

Associated ValueKey-value Pair Store 
Map Key info to Value info

Edit 𝐖0123
(&) to change the predicted fact

𝐡+
(&)

Image Credit: Attention is all you need
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Preliminary – Transformer
𝐡+
(&)𝐡+
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Image Credit: Ref. [3]
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Image Credit: Ref. [3]
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Preliminary – Least Squares with Linear Equality Constraints

𝐖𝐊 ≈ 𝐕⟹min ?𝐖𝐊− 𝐕
?𝐖𝐊∗ = 𝐕∗
𝐊: Key Input

𝐕: Value Output
𝐖: Key-Value Pair
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𝐶.𝟏K∗ 9𝐊∗
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Preliminary – Least Squares with Linear Equality Constraints
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𝐖0123
(&) update rule



© Philips - Confidential

Definitions

• Factual: concerned with facts or contains facts, rather than giving theories or personal interpretations. 
• Factuality: the quality of being actual or based on facts (“fact” to be the world knowledge)
• Faithfulness: stay consistent and truthful to the provided source (opposite to Hallucination)
• Factual Associations: causal effects between subject and object, based on facts (world knowledge)
• Factual Storage: mechanism or some place that triggers or stores Factual Knowledge

Problem Definition

Fact Representation

• Knowledge Tuple: 𝑡 = 𝑠, 𝑟, 𝑜 where 𝑠: Subject, 𝑟: relationship, 𝑜: Object

Input and Output

• Input: a natural language prompt 𝑝 = 𝑠, 𝑟

• Output: model’s prediction of Object 𝑜
Eiffel Tower is located in the city of Paris

Subject 𝑠 Object 𝑜Relation 𝑟

Prompt 𝑝

Factuality and Faithfulness Reference: Ref. [1]
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Why Causal Tracing?

• Understand Factual Associations

• Locate the specific modules that mediate recall of a fact about a subject

Part 1: Causal Tracing of Factual Associations

How to implement Causal Tracing of Factual Associations?

• Causal Graph and Causal Mediation Analysis

Eiffel Tower is located in the city of Paris

Factual Association

𝑠

𝑟

𝐡+
(&)

Image Credit: Ref. [3]
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Part 1: Causal Tracing of Factual Associations
Causal Mediation Analysis: quantify the contribution of intermediate Variables 

𝑠

𝑟
Clean Run ℙ 𝒐

• Clean Input 𝑝⟹ Hidden State 𝐡!
(#)

Corrupted Run ℙ∗ 𝒐

• Noisy Input 𝐡"
($) ≔ 𝐡"

$ +∈ note: (∈ ~𝒩(0; 𝜎))⟹ Corruptted Activations 𝐡!∗
(#)

Corruptted-with-restoration Run ℙ∗,'()*+ 𝐡𝒊(𝒍)
𝒐

• Noisy Input 𝐡"
($) ≔ 𝐡"

$ +∈ except at some token ̂𝚤 and layer ̂𝚤

Total Effect (TE)

Indirect Effect (IE)

𝐡+
(&)

Image Credit: Ref. [3]
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Part 1: Causal Mediation Analysis

𝑜 𝑜 𝑜 𝑜 𝑜 𝑜

𝐡!
(#) 𝐡!

(#) 𝐡!
(#) 𝐡!

(#)

Noisy Clean Noisy Noisy
Clean

Clean

Noisy

Noisy

ℙ 𝒐ℙ∗ 𝒐 ℙ∗ 𝒐 ℙ∗ 𝒐
ℙ∗,NOPQR 𝐡𝒊(𝒍)

𝒐ℙRSTUV 𝐡𝒊(𝒍)
𝒐

• Total Effect (TE) = ℙ∗ 𝒐 − ℙ 𝒐
⟹ change in 𝑜 resulting from the intervention
• Direct Effect (DE) = ℙ∗ 𝒐 − ℙRSTUV 𝐡𝒊(𝒍)

𝒐

⟹ change in 𝑜 resulting from performing the intervention while holding a mediator 𝐡+
(&) fixed

• Indirect Effect (IE) = ℙ∗ 𝒐 − ℙ∗,NOPQR 𝐡𝒊
(𝒍) 𝒐

⟹ change in 𝑜 caused by setting 𝐡+
(&) to clean value, while holding others fixed Image Credit: Ref. [4]
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Part 1: Causal Tracing of Factual Associations

MLP: contribute to the last subject token at early site and last token at late site

Attention: contribute to the last token at late site

Decisive information is accumulated across layers

~ Layer 15

GPT-2 XL: 48 layers

𝐡+
(&)

MLP Attention

How LLMs store Factual Knowledge/Associations?

Image Credit: Ref. [3]
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Part 1: Causal Tracing of Factual Associations

Last Subject Token Last Token

MLP Attention𝐡+
(&)

Image Credit: Ref. [3]



© Philips - Confidential

Part 1: Causal Tracing of Factual Associations

Remove MLP or Attention ⟹ MLP module computation at middle layers when recalling a fact.

How LLMs store Factual Knowledge/Associations?

Image Credit: Ref. [3]
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Part 1: Storage of Factual Associations Hypothesis

MLP Middle Layers:
• recall memorized properties about that subject
• accumulate information

Attention Layers:
• summed information is copied to the last token by attention at high layers

Image Credit: Ref. [3]
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Why Edit Model Weights?

• Understand how facts are stored in weights

• Generate factual content

Part 2: Edit Weights to Understand Factual Storage

How to edit Model Weights?

• Rank-One Model Editing (ROME)

• By viewing 𝐖!"#$
(&) as linear associative memory

• Update Rule: 

𝐖𝐊 ≈ 𝐕⟹min ?𝐖𝐊− 𝐕
?𝐖𝐊∗ = 𝐕∗

𝐊: Key Input (e.g., Eiffel Tower)
𝐕: Value Output (e.g., Paris)
Represent the new property

(𝑟, 𝑜∗)
𝐖: Key-Value Pair

?𝐖 = 𝐖+ 𝚲 𝐶.𝟏K∗
9

𝐶 = 𝐊𝐊𝑻

𝚲 =
𝐕∗ −𝐖𝐊∗
𝐶.𝟏K∗ 9𝐊∗ Next: choose the appropriate 𝐊∗ and 𝐕∗

STEP 3
Inserting the Fact

How to edit LLMs to generate Factual Recall?
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STEP 1: Choose 𝐊∗ to represent the last subject token

• Collect Activations from a small amount of texts 𝑥 that contain Subject 𝑠

STEP 2: Choose 𝐕∗ to recall the fact (new relation: 𝑟, 𝑜∗) ⟹𝐕∗ = argmin𝓏 ℒ(𝓏)

ℒ 𝓏 =
1
𝑁
6
#$%

&

−logℙ
'()(

)∗ ≔𝓏)
𝑜∗|𝑥# + 𝑝 + 𝐷,- ℙ

'()(
)∗ ≔𝓏)

𝑥|𝑝. ||ℙ'[𝑥|𝑝.]

Part 2: Edit Weights to Understand Factual Storage

𝐊∗ =
1
𝑁%
3'(

W

𝜎 𝐖45
(&∗)𝛾 𝐚 #&XY ,+

(&∗) + 𝐡 #&XY ,+
(&∗)

𝑝Z: “{ subject } is a”

Maximizing 𝑜∗ Probability Controlling essence drift
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Current related works of Model Editing

Fine-Tuning (FT)

• applies Adam with early stopping at one layer to minimize −logℙ[𝑜∗|𝓍]
Constrained Fine-Tuning (FT+L)

• additionally imposes a parameter-space 𝐿⋈norm constraint on weight changes

Knowledge Editor (KE) and MEND

• learn auxiliary models to predict weight changes
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Better Factual Association Consistency but worse Generation Fluency 

Image Credit: Ref. [3]
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Potential Future Work

• Develop a Safety Verification Method by measuring Factual Associations 

Consistency

• Improve Factual Associations Consistency and Generation Fluency

• Improve Specificity: edited model’s accuracy on an unrelated fact.
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