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Background

Image Quality Assessment (IQA):
quality assessment, performance
evaluation, and model parameter
optimization for image processing
systems.

No-reference IQA: automatically
measure the input image quality
without reference images.

Limitations
of Local Modeling Method

1. Small-sized receptive field -
Extracted features are too local.

2. Parameters fixed across the
whole image — Image Content is
equally treated.

3. Lack of geometric and relational
modeling — Missing complex
relations and layouts.

Superpixel versus
Square Patch

1. Adherence to boundaries and
visually meaningful.
2. Accurate feature extraction.
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Figure 1: The superpixel and square patch segmentation of the

parrot image distorted by the Gaussian blur.

The proposed NLNet
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(i) Image Preprocessing

Input Patch with
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(ii) Graph Neural Network — Non-Local Modeling Method
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Stage Two:
Non-Local Feature
Aggregation

One GNN Layer and the GNN module

(iv) Feature Mean & Std Fusion and Quality Prediction
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(iii) Pre-trained VGGNet-16 — Local Modeling Method

Experimental Results

TABLE II
CROSS-DATABASE PERFORMANCE COMPARISONS

TABLE I
PERFORMANCE COMPARISONS ON THE LIVE, CSIQ, AND TID2013

DATABASES
Method LIVE CSIQ TID2013

SRCC PLCC SRCC PLCC SRCC PLCC

BRISQUE (2012) [3] 0939 0935 0.746 0829 0.604 0.694
CORNIA (2012) [6] 0947 0950 0.678 0.776  0.678  0.768
M3 (2015) [40] 0.951 0950 0.795 0.839 0.689 0.771
HOSA (2016) [7] 0946 0947  0.741 0.823 0.735  0.815
FRIQUEE (2017) [41] 0940 0944 0.835 0.874 0.68 0.753
DIQaM-NR (2018) [42] 0.960  0.972 - - 0.835  0.855
DB-CNN (2020) [11] 0968 0971 0946 0959 0.816  0.865
HyperIQA (2020) [12] 0962 0966 0923 0942 0.729  0.775
GraphIQA (2022) [14] 0968 0970 0920 0.938 - -
TReS (2022) [15] 0969 0968 0922 0942 0.863  0.883
NLNet (Proposed) 0962 0963 0941 0958 0.856 0.880

Training LIVE CSIQ TID2013
Testing CSIQ TID2013 LIVE TID2013 LIVE CSIQ

BRISQUE (2012) [3] 0.562 0.358 0.847 0.454 0.790  0.590
CORNIA (2012) [6] 0.649 0.360 0.853 0.312 0.846  0.672
M3 (2015) [40] 0.621 0.344 0.797 0.328 0.873  0.605
HOSA (2016) [7] 0.594 0.361 0773 0.329 0.846  0.612
FRIQUEE (2017) [41]  0.722 0.461 0.879 0.463 0.755  0.635
DIQaM-NR (2018) [42] 0.681 0.392 - - - 0.717
DB-CNN (2020) [11] 0.758 0.524 0.877 0.540 0.891 0.807
HyperIQA (2020) [12]  0.697 0.538 0.905 0.554 0.839 0.543
NLNet (Proposed) 0.771 0.497 0.923 0.516 0.895 0.730

Motivation

Human Visual System (HVS) is
adaptive to the local content -
Local feature extraction via a CNN-
based local modeling method.

HVS perceives image quality with long
dependency constructed among
different regions — Non-local feature
extraction for long-range dependency
modeling.
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Figure 2: Local region feature extraction and non-local
dependency feature extraction

Conclusion

We propose a novel NR-IQA
framework based on the GNN. The
non-local behavior of natural images
is emphasized and learned in our
proposed Non-Local Dependency
Network (termed as NLNet).
Extensive  experimental results
reveal that the proposed NLNet
manages to extract the non-local
information for quality prediction,
and the superior performance in
cross-dataset settings verifies the
high generalization capability of our
proposed method.



