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Background

» BCI: establish connections between the brain and machines

(1) Acquire and analyze brain signals while conducting actual or imagery tasks
(2) Control machines
»  Significance: help the disabled and understand the human brain

»  Types of BCI:

» Electroencephalography (EEG)
» Magnetoencephalography (MEG)
» Functional Magnetic Resonance Imaging (fMRI)
» Invasive BCI Technologies (e.g., Neuralink)

» Reasons for using EEG for this project:
» Non-Invasiveness ]
» High Temporal Resolution

- — A potential market
» Portability

» Inexpensive Equipment

»  Specific Task: EEG Motor Imagery (e.g., control a wheelchair via imagery-based EEG signals)

»  Our Research: develop EEG-based BCI technologies to improve current stroke rehabilitation strategies

Image Credit: in the public domain.



Key Points in dealing with EEG time series

» Individual Variability — Lower Classification Accuracy

| © LowSNR |v\

v Different brain electrical conductivity «— different anatomical structure of brain

v Electrodes’ positional error \

Feature Extraction

EEG Electrodes’
» Slow Responding — Hard to develop Real-life Applications Structure Modeling
V" [most literature] Trial-level prediction (e.g., 4 s)
v Window/Slide-level prediction (e.g., 0.4 s)
v" Time-resolved prediction (e.g., 6.25 ms) (Our Work) \

Time-resolved or Window-base
» Lower Group-level Accuracy — Hard to develop Applications for a Group of People Signal Sampling

v [most literature] Subject-level prediction (Our Work)

v Group-level prediction (Our Work)




Motivation

Convolutional Neural Networks:

convolutional layer layer layer
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CNN
* Module: Convolution — Pooling — Fully-connected

* Modeling: Euclidean-Structured Data (e.g., Image, Speech, Natural Language)

* Neuroscience research has increasingly emphasized Brain Network Dynamics

* Model Functional Topological Connectivity of EEG Electrodes — Graph (Non-Euclidean Structure)

Electroencephalogram (EEG)
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Image Credit: The PhysioNet Dataset and the Functional Network Image is in the public domain.

Our Question

node

How to model the EEG System
eigh
0 as a Graph?
How can we process EEG Signals

Graph via Graph Representation Learning?



Can we directly apply convolutions on graphs?

» Traditional CNN cannot directly process graph signals
» Graph is irregular (i.e., unordered and vary in size)

» Convolution cannot keep Translation Invariance on non-Euclidean signals

» Graph Convolutional Neural Networks (GCN)

®
» Directly process non-Euclidean graph-structured signals
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» Consider relational properties (e.g., correlations) between nodes A S
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— Model Functional Topological Relationships among EEG electrodes

— Analyze and interpret Brain Network Dynamics




Benchmark Dataset

» The PhysioNet Dataset (EEG Motor Movement/Imagery Dataset)
» International 10-10 EEG System — 64 electrodes
(excluding electrodes Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9, and P10)
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109 subjects (the largest number of participants in the field of EEG Motor Imagery)
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Task: 4-class EEG Motor Imagery Classification
v Imagining (Task 1) left fist, (Task 2) right fist, (Task 3) both fists, (Task 4) both feet
Each subject — 3 runs, 7 trials, 4 classes — 84 trials in total
Each trial — 4 seconds experimental duration, 160 Hz Sampling Rate — 640 Time Points
We apply the Time-resolved Sampling Method
v Total samples per subject: 3 runs X 7 trials X 4 classes X 4 seconds X 160 Hz = 53,760 samples

v Experimental Setting: 90% as the training set and the left 10% as the test set

Image Credit: The PhysioNet Dataset and the middle image is in the public domain.



Preliminary: Graph Representation

Definition: An Undirected and Weighted Graph with N nodes: G = {V,E, A} Weigh Node
— V:nodes (vertices), |[V| =N 0.7
— E: edges (links) that connect nodes Edge

— A: weights (correlations) between nodes

Nodes Correlations: Pearson Matrix P € RV*N (denotes as PCC matrix)
— Measure the linear correlations between node x and node y
— p is the mean, o is the standard deviation, and Py, is the Pearson Correlation Coefficient between node x and node y

E(xX—u)(y— .uy))
Ox0y

Px'y ==

— Absolute Pearson Matrix: |P| € RV*N and |P;;| € [0,1] — Note: In this work, we only consider scale.

Graph Weights: Adjacency Matrix A = |P| — I € RV*N where I is an Identity Matrix
Graph Degrees: Degree Matrix D € RV*N

N
D;i = Z Ajj
Jj=1
Graph Representation: Combinatorial Laplacian L € RV*N
L=D-A
Normalized:
11



Preliminary:

Spectral Theorem for Graph Laplacian L
L = UAU!
LU = AU

— U: Fourier basis — real and orthonormal eigenvectors of L

— A: Fourier modes — the diagonal is the ordered and real nonnegative eigenvalues of L

can be seen as the e /@t

/ in Fourier Transforms
FIFO] = F ) = ) fFOxTD
i=1

f=UTfef=UfQ)

f () is the projection value of the Fourier basis U

Graph Fourier Transforms of Signal f



Preliminary: Graph Convolution via Graph Fourier Transform

Notation: Note: Fourier Transforms of Convolution in the spatial domain
: S
Signal f L e : :
Point-wise Multiplication of two Fourier transformed signals
Signal A
F: Fourier Transforms F((f * h)G) = f(w)xh(w)
F~1: Inverse Fourier Transforms
A ; — F-1(¢F h
Fw): F(p) Convolution (f * h)g= F~*(f (w)Xh(w))
Rw): Fh) Hadamard Product

| f‘ Q) = U7 f (Element-wise Multiplication)

(f *he=F ((UTf) © (U™h))
\f=UﬂM
(f *he=U((UTf) © (UTh))

[n X n] \ [n X n] [n X n]
(f * h)g= U diag[A(4;), A(A,), .., A(A,)]UTf

Source: https://en.wikipedia.org/wiki/Convolution theorem

[n X d]




Graph Convolution

l Activation Function
Y =a(UgeU™X)

l K™ Polynomial Function

K
—_ T .
y = O'(Uge (A)U X) ) Approximate gB(A) — Z HkAk
A= dlag(ﬂ.l,)lz, ""/11‘1)

l
= ( 2 0, A UT ) = a(Z 0, (UAkUT)x> = 0(2 0, (UAUT)*x ) (Z )

K
y20< Hkka>

Credit: Defferrard et al., Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, In NeurIPS 2016.



Convolution:

R Weighted Sum
Graph Convolution

Node Aggregation

K is Filter Size Y = Beauty is in Simplicity

No need for Fourier Transform

GCN Key Idea: Use "edge information" to aggregate "node information" to generate a new "node representation”

Localize in Space

Laplace Operator s
Local connectivity X’ X
Xnew < LX; = zAij(Xi — Xj) M =
J

Pros:
1. No need for Spectral Decomposition of L
2. Less number of parameters (decrease model complexity) — K K N

Cons: Need to compute L*



Pooling on Graphs (Graph Coarsening)

Traditional CNN doesn’t need to consider neighbors after convolutions

[Euclidean Structure] The output Feature Maps are “regular”

The neighbor 1s “meaningful”

GCNs need to consider neighbors after convolutions

[Non-Euclidean Structure] The output graphs’ nodes are not arranged in any meaningful way
Use Graclus Multilevel Clustering Algorithm to find “meaningful” neighbors

Minimize the Local Normalized Cut (a cluster grouping method)

W ( 1 1 )
Y di dj
1 andj denote node 1 and nodej

W;;j is the learned weight between node 1 and node j

Image Credit: in the public domain.



“IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII..
*

* (i) EEG Data Acquisition .,

el Slg“a‘s

_.-lll-
e
=
=

L 4

(ii) Correlations between EEG Electrodes

) Absolute . . Graph
PCC Matrix PCC Matrix Adjacency Matrix Laplacian

Absolute Pearson Matrix for 4 Subjects jacency Matrix for 4 Subjects Laplacian Matrix for 4 Subjects
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(iii) Graph Representation
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Correlation among EEG electrodes

Two Subjects: Subject 10 and 5
Problem: Individual Variability

Adjacency Matrix for Subject 10 Laplacian Matrix for Subject 10

Absolute Pearson Matrix for Subject 10

Pearson Matrix for Subject 10
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Fig. 6. PCC matrix, absolute PCC matrix, adjacency matrix, and graph Laplacian for Subjects 10 and 5 from the PhysioNet dataset. (a) PCC matrix for
Subject 10. (b) Absolute PCC matrix for Subject 10. (c) Adjacency matrix for Subject 10. (d) Graph Laplacian for Subject 10. (¢) PCC matrix for Subject 5.
(f) Absolute PCC matrix for Subject 5. (g) Adjacency matrix for Subject 5. (h) Graph Laplacian for Subject 5.




Correlation among EEG electrodes
20 Subjects and 100 Subjects

Laplacian Matrix for 20 Subjects

Pearson Matrix for 20 Subjects Absolute Pearson Matrix for 20 Subjects Adjacency Matrix for 20 Subjects

(b) (¢ (d

Adjacency Matrix for 100 Subjects

® (® ()

Fig. 2. PCC matrix, absolute PCC matrix, adjacency matrix, and graph Laplacian for 20 and 100 subjects, respectively, from the PhysioNet dataset. (a) PCC
matrix for 20 subjects. (b) Absolute PCC matrix for 20 subjects. (c) Adjacency matrix for 20 subjects. (d) Graph Laplacian for 20 subjects. (¢) PCC matrix
for 100 subjects. (f) Absolute PCC matrix for 100 subjects. (g) Adjacency matrix for 100 subjects. (h) Graph Laplacian for 100 subjects.

Increasing the number of subjects alleviates individual variability



Model Design for 64-clectrode EEG System

TABLE I
IMPLEMENTATION DETAILS OF THE PROPOSED GCNS-NET ON THE PHYSIONET DATASET

. Polynomial ~ Pooling — . .
Layer Type Maps Size Edges Order Size Activation Weights Bias
Softmax  Fully-connected — @) - — — Softmax 6% X 6—12 X Fg x O @)
Flatten Flatten — = X a3 X Fe — — _ - _ _
N
P6 Max-pooling Fe é\I—Q >332 Y — 2 — — —
: N1,
co Convolution Fs % 2%21 i K — Softplus Fs x Fg x K % x Fg
N_q
P5 Max-pooling Fs % D8, — 2 — — _
. N1,
C5 Convolution Fs % Zi:;:(il 1 K — Softplus Fis x F5 x K % x Fg
P4 Max-pooling Fy4 % ZF:Il i - 2 - _ _
N _
C4 Convolution F4 N S8 K - Softplus Fa x Fy x K N % Fy
N _
P3 Max-pooling F3 % >t i — 2 — — —
. N_1,
C3 Convolution F3 % Zi::l 1 K — Softplus Fo x F3 x K % x F3
N_1
P2 Max-pooling Fo % D0 — 2 — — _
N_q
C2 Convolution Fo N S K — Softplus F; x Fo x K N x Fa
P1 Max-pooling F1 N Z}sz; _11 ) — 2 — — _
Cl1 Convolution Fq N Z‘:_llz' K — Softplus 1xF;1 xK N x F1
Input Input 1 N Zi:_ll ) — — — — _




Model Optimization

Ablation Study: Optimal Model Structure (64-electrode EEG System)
— C6-P6-K2 with [16, 32, 64, 128, 256, 512] filters
Gradient Iterative Solver: Adam Optimizer with Stochastic Gradient Descent (SGD) algorithm
— Learning Rate: 0.01
— Batch Size: 1,024
Activation Function: Softplus (Smooth Rectified Linear Unit)
F(x) = log(1 + €%

Model Output: Softmax: y are labels, ¥ are the final output tasks

eyi
y; = argmax

Loss Function: Cross-entropy Loss with L2 regularization

4 n
Loss = — z y; log(y7;) + A z sz + bjz
i=1 =1

A =1X10 is the coefficient of the L2 regularization.



Ablation Study

Accuracy of C1-P1 w.r.t. Polynomial Orders
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Fig. 3. Accuracy of some selected models regarding different polynomial approximation order. The models are selected from Table II. (a) Accuracy of the
model C1-P1 (model 1). (b) Accuracy of the model C2-P2 (model 3). (c) Accuracy of the model C3-P3 (model 6). (d) Accuracy of the model C4-P4 (model

10). (e) Accuracy of the model C5-P5 (model 14). (f) Accuracy of the model C6-P3 (model 16). (g) Accuracy of the model C6-P5 (model 19). (h) Accuracy
of the model C6-P6 (model 20).



TABLE IV
PERFORMANCE COMPARISONS ON THE PHYSIONET DATASET

Experimental Results
Groupwise Prediction and Subject-specific Adaptation

Related Work Max. Accuracy  Avg. Accuracy  p-value Level Approach Num. of Subjects

— 58.58% — Group 105

Dose et al. (2018) [22] 80.38% 63.51% <0.05 Subject CNNs I
Ma et al. (2018) [60] 82.65% 68.20% — Group RNNs 12
94.50% — — Group 10

Hou et al. (2020) [20] 96.00% B > 0.05  Subject ESI-CNNs |
94.64% — — Group : 20

Hou et al. (2022) [34] 98.81% 95.48% >0.05 Subject DILSTM-GEN 1
: 94.16% 93.78% — Group 20

Jia et al. (2022) [40] 98.08% 94.18% > 0.05  Subject Graph ResNet )
89.39% 88.57 % Grou 20
Author 88.14% - - P GCNs-Net 100
98.72 % 93.06 % Subject 1

Note: p-value < 0.05 — Statistically Significant Difference



Takeaways and Future Work

v Graph Representation

Graph Representation Learning to deeply extract Network Patterns of Brain Dynamics for EEG classification.

v’ Model Converge

Converge for both Personalized and Groupwise Predictions, indicating that the GCNs-Net is able to build a

generalized representation of EEG time-series against both Personalized and Groupwise Variations.

v Future Work

Model EEG signals as Dynamic Graphs and process them via Dynamic Graph Representation Learning.



Thank you!

Any question?

Acknowledgment: Dr. Zhijian Hou and Dr. Dingquan Li.



