www.philips.com

Dynamic Graph Convolutional Neural Networks
From DNN — CNN & RNN — Spectral GCN — DGCN

Shuyue Jia

shuyuej@ieee.org

Research Intern @ Tencent & Philips Research
November 2020

innovation+4¥you

Learning Objectives: From to Networks

* From — —

* How to extend to

e Howto Graphs through

E.i%:
Recall: - Neural Networks, :
- for Local-matter Signals,

- Features Mapped to Labels

Human accuracy 4.1%

2010 2011 @ 2013 2014 2015 2016

—
Handcraft features (SIFT) Handcraft learning systems

Conv_1
Convolution

(5x5) kernel

valid padding

Recall: Traditional (

Conv_2
Convolution

Max-Pooling (5 x 5) kernel
2x2) valid padding

INPUT
(28 x28x1)

n1 channels nl channels

(24 x24 xnl) (12x12 xnl)

for

fc_s fc_a

Fully-Connected Fully-Connected
Neural Network Neural Network

RelU activation |

Ma;;?;)“ (with

n2 channels n2 channels

(8x8xn2) (4x4xn2) w

n3 units

Recall: CNNs’ Fully-connected Layer :/”!
(Gradient Descent Algorithm to update model parameters) e~

408
AX

derivative

Recall: CNNs’ Fully-connected Layer (Multi-layer Perceptron)
(Gradient Descent Algorithm to update model parameters)

The parameters that we are training are
W (weights) and b (biases).

CIToTr

X Wi Model _
== TN Output Labels y= Zi wix; + b

(Z le f(y) = 1

P 1+e7V
X3 Supervised Learning

1 2
0 GE@ @R o %(g(x) _F@)

ow

oL of(y) 0y
W=——X —= X —
of v) oy ow

= [8() = fFMIX[f (M*x (A = fFENI*xX

y=Xiwix; +b —
I CICORNIQR

ab o —

1+e7Y _J

]

SNm\mle\e\
/
._.\
N
/
\ \\
N

— - Cross Correlation Function, implemented by FFT, O(nlog(n)):

5
EA\N
S \

\ ~ \t; T\g'a\tf\

~ \4
AN

N=1\

'i,.J —)] 03G,j) = X * H(,j) = ZZX(i+m,j + n)f(m, n)

Activated by Rectified Linear Unit (ReLu) with Batch Normalization:

neuron = 0(i,j) + b o
N 315 5
_ neuron — batch mean L
Sonelimsion ~ batch Standard Deviation _
Convolution Output Shape: Rl = (BN, 0) (' \ b
0= w +1 Why Convolutions? Mathematical Biomedical Neuron
S

N: Input 2D Signals Size 1. Translation & Shift Invariance

P: Padding (Zero) Size 2. Weights Sharing and Sparse Connectivity

F: Filter Size ' . .

S: Stride Size 3. Multi-scale (Hierarchical)

Active Conv (CVRR2017), Deformable Conv (ICCV2017) ~ Num of Model Parameters: ~ FXFXCXW + W = F2xCx W+1)

Recall: CNNs’ Pooling Layer e
3/

Feature map: 4x4
Average-pool with 2x2 filters Max-pool with 2x2 filters
and stride 2 and stride 2

Social networks 3D shapes

"
=
n°
2
a
7
s
s
2
o
-1
2
2
=
5
-£
-7
-8
-

Unitod States W
transmission grid |-
Gocsca FEUA H

Electrical data Traffic data Temperature data

PI:IIIPS
i ’
P
"/

1. Represent of data

2. Contain of data
3. Contain of data

Key Question:
Can we use

directly?

* Represent as
* then use Traditional or

Answer 1: , we can!

Sliding Window

i w

EEG
Acquisition’

A - Treen)

1D Data Vector Series

D Da
yector to 20 P
';gmx Transtormatl

Fig. 1. Process of EEG data acquisition and spatio-temporal information preserving conversion. EEG signals are first captured using a BCI headset with
multiple electrodes and recorded as time series vectors. These vectors are then converted to 2-D data meshes according to the electrode map of the BCI
headset. The converted 2-D meshes are finally segmented to clips using the sliding window technique.

Reference:

https://ieeexplore.ieee.org/abstract/document/8698218?casa_token=ZrmcwArLF_sAAAAA:Gfy0CK5begj5Juyt3Y2k5flI-8e9lRH98qAU0xTOu68yW2YqgSrx4Z3N48BVT4QpHt9LZsVjtG0

Key Question:
Can we use directly?

Answer 2: , we can!
e Use fo represent —
* then use Traditional or e.g., Adjacency Matrix, Laplacian Matrix

Temporal Slices Convolutional
Cropping Layer Node Spliting

w
EEG Node ; —_—
Positioning ‘ , Fesemm— Intention

Classification

Node
Attention | B
Module

EEG Sensory
Readings

Fig. 1. Overview of the Graph Hierarchical Attention Model (G-HAM) on EEG-based intention recognition. We first embed the raw EEG signal with
the node positioning graph; then we apply a sliding window technique to crop continuous EEG sequences into temporal slices and utilize a CNN to
extract features of each slice. The first-level attention mechanism is applied to focus on the most discriminative temporal slices; the second-level
attention layer targets the most discriminative EEG node and lastly the extracted features are classified to the target intentions using a dense layer

with a softmax function.

Reference:

https://ieeexplore.ieee.org/document/8847648

Key Question:

Can we use directly?

Answer 3: , we cannot!
* Graphs are irregular! (1. unordered 2. vary in size)

— Convolution keep on the

OUR QUESTION
Can we intrinsically and mathematically

to learn the node(s) and edge(s) representations?

Problem Definition >

— Graph Laplacian
— Spectral Graph Theory
V.S.

Network without temporal information
Network with temporal information as labels on the edge(s) / Node(s)

Networks in discrete time intervals

Ll

Networks without temporal aggregation

: Accuracy, Precision, Recall, F1-Score, Confusion Matrix, ROC Curve, AUC, Kappa Coefficient,
: Cross-entropy, Negative Log-likelihood (NLL),

* Graph Convolutional Neural Networks, Graph CNN, GCN, GNN, ...
* Dynamic Graph Convolutional Neural Networks, Dynamic GCN, Dynamic GNN, DGNN, DGCN, ...

Graph Representation: Laplacian Matrix in Graph Theory

Graph Description: Undirected and Weighted Graph: G = {V, E, A}
— V: nodes (vertices), |[V| =N

: 1. Weights cigh
— E: edges (links) that connected nodes

2. Degrees Jedge
— A: weights / correlations between nodes

Nodes: different sensors, observations, or data points.

Edges: connections, similarities, or correlations among those points.
Correlations representation: Pearson Matrix

— Measure the linear correlations between nodes

— Below, u is the expectation, o is the standard deviation, and Py y is the Pearson Correlation Coefficient (PCC) between two nodes
_E(x =)y — 1y))

Xy

040y

— Absolute Pearson Matrix: |Pyy| = X € RIVIXd (Vertex-features Matrix)

Graph Weights representation: Adjacency Matrix: A € RIVIXIVl = |Px_y| — I, I is an Identity g J ’ P
Graph Degrees representation: Degree Matrix J l

; |
Dj; = Z Ajj
=1

Graph representation: Graph Laplacian (Laplacian Matrix, Combinatorial Laplacian)
L=D-A
Normalized Graph Laplacian:

11
L = Iy — D 2AD2

Labelled graph Degree matrix Adjacency matrix Laplacian matrix

' 00 0 1001 2 -1 0 0 -1 0
Why use Laplacian Matrix? §& PR

0 0 -1 3 =1 =1
=1, =1 0 -1 3 0

o 0 0 -1 0 1

e Contain Graph Weights and Degrees —
e Non-zero: central node and its 1-hop neighbors; The others are all zeros!

« Laplacian Matrix = Discrete Laplace Operator Calga 244y

» n' orthogonal eigenvectors — — Extract graph’ Spatial Info from Spectral domain
» Eigenvectors = Discrete Laplace Operator’s characteristic function (Ch.f.): e 71W¢

» All eigenvalues are positive

» Eigenvectors U — Definite Matrix UTU =E

PHILIPS
"/

Bruna et al. Bruna et al. Defferrardet R.Lietal.
(2014) (2015) et al. (2016) (2018)

SCNN SmoothSCNN hebNet AGCN

GCNN DCNN ACNN GNN SACNN LAGN
Masci et al. Atwood et al. Bocaini et al. Hechtlinger Chang et al. Chang et al.
(2015) (2016) (2016) etal. (2017) 2018) (2019)

GraphSage
MPNN Monet Hamilton et al. PGC

l—‘-liéz %*D E: £ Gilmer et al. Monti et al. (2018) Yan et al.
I /N / (2017) (2017) GAT (2018)
Velickovic et al.

Spatial approaches Qo1

Convolution V.S. Convolution -‘.’%

e Applied to Nodes’ Neighbors directly in the Spatial domain to aggregate features
* Cons:
1. No static neighbors’ structure
2. Nodes unordered

3. Output dimension changed, hard to process later

* Representation Model: ;) ;

Figure 1: Visualization of the graph convolution size 5. For a given node, the convolution is
applied on the node and its 4 closest neighbors selected by the random walk. As the right figure
demonstrates, the random walk can expand further into the graph to higher degree neighbors. The
convolution weights are shared according to the neighbors’ closeness to the nodes and applied
globally on all nodes.

PHILIPS

Convolution V.S. Convolution v

Input graph signals > Feature extraction > Classification » Output si s
e bays of words ®

Carnolutional layers Fully connacted layers. eq)

* Signals () — Signals () — Signals () g i
o Cons : Figure 1: Architecture of a CNN on graphs and the four ingredients of a (graph) convolutional layer.
I. Only are applicable — Cannot use Spectral Convolution

Lots of scenarios are directed graphs — Wj; # Wj;
2. Cannot change (Graph Laplacian) during Training

3. SCNN high Time Complexity O(n?), and ChebNet and GCN few parameters weaken model performance

* Representation Model: ; :

Recall: Spectral Theorem

Let A € R™" be symmetric, and A; € R (i = 1,2,3, ..., n), n be the eigenvalues of A. There exists
a set of orthonormal vectors u; € Ry, (i = 1,2,3, ..., n), such that Au; = Aju;. Equivalently, there

exists an orthonormal matrix U = [ug, Uy, ..., uy] € R™®, such that UUT = UTU = I

n
A= UAUT = z AiuiuiT
i=1

A = diag(Ay, Ay, oo, Ay)

PI:IIIPS
i ’
P
"/

@ A function f:[—m,m] & R can be written as Fourier series:

k>0

f(:l?) _ Z % -/; f(ml)e—ik:z:'dxl etk

fk=(f,€_ik”)L2([_,r,n])

.f —D— =f1— +f2vQ +faﬂv%+...

ikx

@ Fourier basis €~ = Laplace-Beltrami eigenfunctions:

—Ady = K¢

Fourier mode
frequency of Fourier mode

Spectral Theorem for Graph Laplacian

L = UAUT
LU = AU

— U: Fourier modes, which are real and orthonormal eigenvectors of L (self-adjointness)

— A : Fourier Frequencies, where the diagonal is the ordered real nonnegative eigenvalues of L (positive-semidefiniteness)

—iwt

Graph Fourier Transform can be seen as e

: /
FIf ()] = f (L) =< f, Uy >= Z £ *
=1

fA=UTfef=UfQ)

f (1) is the projection value of Fourier basis Uy, w.r.t. f

@ Fuclidean domain:

@ Graph domain:

[10] Von Luxburg 2007

-1

PHILIPS
"/

r

— 0

First eigenvectors of 1D Euclidean Laplacian = standard Fourier basis

First Laplacian eigenvectors of a graph

Lap eigenvectors related to graph geometry

(s.a. communities, hubs, etc), spectral clustering/'®!

Graph Convolution F((f *h)g) = f(w)xh(w)
(f * W= F~1(f (W) xh(w))

A Hamada Product
J f (A) = AIJTf./ Element-wise Multiplication

(f * h)g=F*((UTf) ©(UTh))

If d=1:
f = Uf(,l) Output Shape: [n x n]
otherwise:
Output Shape: [n x d] or
(f *h)e=U ((UTf) © (UTh)) [nx nxd]

[n X n] \ [n X n] [nxn] [nxd]

_ A ~ ~ 7 Graph Convolution
(F * Ho= U diag[h(2,), h(z), ., KARIUTF | G0 Comoly

Spectral Graph Convolution Timeline

(f * W)= U diagh(4;), h(4;), ..., h(A)]UTf

NIPS 2014 NIPS 2016 ICLR 2017 Timeline

»
|

15¢ Generation: SCNN 24 Generation: ChebNet 34 Generation: ChebNet 4™ Generation: GCN

K K-1
Y =0a(UgeUTx) - Z 3 = Z L = (Lk

. =0 0, L =0 Ok Tx(L [AL ¢
2om gl g Y 2, x| Y 2, % k(D)x

L=

L—Iy

Amax

15t Generation Graph Convolution: SCNN

Activation Function

Y=0(UgeUTY)
gg = diag[6,,0,, ..., 0,]

Cons:

1. Global Convolution — No Local Connection, no Weights Sharing

2. O(n?) Spectral Decomposition

Model Parameters: nXInput_sizexXnum_filter + num_filter = nXInput_size X (num_filter + 1)
Spectral Networks and Locally Connected Networks on Graphs, NIPS, 2014.

https://arxiv.org/abs/1312.6203

214 Generation Graph Convolution

l Activation Function

— T
y =0 UgHU X) K™ Polynomial Function

| K
— T . : :
y = O'(Uge (A)U X)) Approximate g@ (A) — HkAk
A= dlag(Al, /12, ooo /11’1)

K .
= (Z 6, A UT) (Z 0, (UA"UT))(>—0<Z 6, (UAUTXy) (

y=0< HkLk)(>

Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, NIPS, 2016.

IIMW

http://papers.nips.cc/paper/6081-convolutional-neural-networks-on-graphs-with-fast-localized-spectral-filtering.pdf

219 Generation Graph Convolution Convolution:
Weighted Sum

Weights Sharing — Trapélation Invariance
“Laplace Operator”
Xpew < LXj = z Aj(xi — x5)
j

Local connectivity
No need for Fourier

“Node Aggregation” y =0 QkL X

K is Filter Size SEREEEEEESEE ’

nn

GCN Key Idea: Use "edge information" to "aggregate" "node information" to generate a new "node representation"

K=1 K=2

> -~ —9) o

I £7s] Wi £

he o2 We=l Mz

Pros: o to0—t L s IS o o

1. No need for Spectral Decomposition
2. Less number of parameters (decrease model complexity) — K «<'n

Cons: Model Parameters:

Need to compute Lk, O(n?) KXInput_sizexnum_filter + num_filter = KXInput_sizeX (num_filter + 1)

3T Generation Graph Convolution (ChebNet)

Y =0o(UgeU"p)

Kt Chebyshev polynomial

K-1
" 0 T (K) _ Approximate
8o ~ k 'k - T (X) = 2xTx_ 1 (X) — T, (%)
k=0 TO =1
Tl =X

A=

A—Ty

max

A
K-1 5
’y=0<z Qka(ﬂ))(> E:A L—1Iy
” max

=0
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, NIPS, 2016.

http://papers.nips.cc/paper/6081-convolutional-neural-networks-on-graphs-with-fast-localized-spectral-filtering.pdf

3T Generation Graph Convolution: ChebNet

Pros:

1. No need for Spectral Decomposition

2. No need for LK
3. Less number of parameters (decrease model complexity) — K < n
4

O(n) Time Complexity

Model Parameters: KXInput_sizexXnum_filter + num_filter = KXInput_sizeX (num_filter + 1)

4™ Generation Graph Convolution: GCN

K-1
-y =0 z Hk Tk (E)X Kt Chebyshev polynomial
T (%) = 2xTy 1 (%) — T2 (%)
2 To=1

L—IN Tl:X

Assume K=1: < Only consider 1" order Chebyshev Approximation

Y=o (Z 0, Tk(ﬁ))(> = 0(0oTo(L)x + 0, Ty(L)x) = a(0ox + 0. Ly)

Assume Ay =2:

Y = 0(90)(+ 91£X) =og(Ogx +6:(L—In)x)
1 1
L=DZ(D—A)D 2

Semi-Supervised Classification with Graph Convolutional Networks, ICLR, 2017.

https://arxiv.org/abs/1609.02907

4™ Generation Graph Convolution: GCN

Assume K=1:

Y=o (Z 0, Tk(f.))(> = 0(0oTo(L)x + 0, Ty (L)x) = 0(60x + 6:Lx)

Assume Apyax =2:

Y = 0(90)(+ 91£X) = 0(Bpx + 6, (L —1In)x)
1 1
L=DZ(D—A)D2

11
Box +6,(—D 2AD 2))()

o
. Eigenvalues € [0, 2]
= (H(IN + D_%AD_%))()

Assume 8 = 0y = —0, :

Assume A = In+4: (1_ 1

__A ——

H Ow o

1 1 HI+D =D
(renormalization trick) Y=o (QD 2AD 2y)

4™ Generation Graph Convolution: GCN

— — —

Pros:

1. Few trainable parameters: one parameter per filter

2. Only concern one-hop neighbor: Stacked GCN layer — enlarge receptive fields
Cons:

Few trainable parameters — Weaken the capability of the model

Model Parameters: Input_sizexnum_filter + num_filter = Input_size X (num_filter + 1)

The

@ Manolo P Am:@.fe

Luciennédiervey

Carson Ferguson
® 9 Harrie

Stepha .
.d': lwyn @ Berenice
~

Cassius \ @Dbun
Lita " gChad
Thorin Kay
@ Marlon Filip- @ Ellie 7 Banérisca ~ @Katlin

g Jessamine
.Ronm Wain

Blakelee @ Vidge
@ Cdelg Crawford

DuWarcille

@ Kare Tymothy
® ,nﬁ(eyane @ Lissie
%) Easter

Alfreda

C""V.Alenhea

vailhaprer
Brigg

@ Dorry

Amalee Harmon
@ o

@ Aurora Nil

(Traditional GCN Model)

Hyman ;
Roseline

.."ﬂicardo Miran
L@y mogene
. g Evaleen

.Tlff

@ Griffin

As for , the Graph should be

m

PHILIPS

Problem Definition &

: a network that changes over
: Graph Nodes () and Edges ()

appear and/or disappear over

i

Time 2 Time 3

i,

Time |

PHILIPS

Problem Definition &

: Graph Nodes () and Edges () appear and/or disappear over

Recall: RNN-based Model (

RNN-based Architecture
: [max_time x Input_dim]

i=of Whilti i+ we © -1 +b),
f=0(Wgszi + Whphi—1 +wer © ci—1 + by),
a=fi0c-1+1 O ta'nh(W:ccxt + Whehi—1 + bc),

0= O'(Wzoib't + Whoht—l + weo © ¢ + bo),
ht = 0 ® tanh(cy),

LSTM Equations
: 4x(Input_Sizexh+h>+h)

) for Time-

series (Sequence) Signals

X £
X X
LSTM Model

PHILIPS

Current Popular Model
Transformer

PHILIPS

Problem Definition S

: Graph Nodes () and Edges () appear and/or disappear over

Dynamic graph
neural networks

Recurrent neural
network based

Continous
Temporal point
process based

Fig. 6: An overview of dynamic graph neural networks. The main distinction is between discrete and continuous models. This
is an extension of Fig 5.

Target node

Input active node

Computed node with
highest probability

RNN
gates capture the
dunamic property
of data

It Spatio-temporal data on graphs

Figure 1: Ilustration of the proposed GCRN model for
spatio-temporal predlctlon of graph-structured data. The
technique combines a - same time CNN or (
RNN. RNN can be easily exchanged with LSTM or GRU
networks.

PHILIPS
"/

(Conv + RNN) : — Graph Structural Patterns; — Temporal Patterns

Snapshot 4
Snapshot 3
SnapshoL&
LiSTEN
ESTENT
SHEN
LST N
BISHEN

s i e S SRR i
R
et

.
.
.
.
.
.
.

-
.
.
.
.
.
.
.
.
n
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

from Manessi et al. [65]. The gtaph.convohmon 1aYee(GC) encode the graph structure in
ncode temporal patterns.

https://arxiv.org/pdf/1612.07659.pdf

(Conv + RNN) &

1/

The mathematics of the GC layer [14]| and the LSTM [16] are
here briefly recalled, since they are the basic building blocks of
the contribution of this paper. Given a graph with adjacency ma-

feature matrix X e RIVIxd, the GC layer
RIM trix is defined as the

Reshape
Gcgi,n - RIVIxd _ gIVIXM _»P R|v|M x1

GCya(X) : = ReLU(AXB), (1)
where A is the re-normalized adjacency matrix, i.e. A: = P 2AD : -
with A: = A+ Iy, and D]y, : = 3;[Aly. Note that the GC layer can | : SAEN
be seen as localized first-order approximation of spectral graph : A—
convolution [34], with the additional renormalization trick in order : LISTENA
to improve numerical stability [14]. :

Given the : I SAENS
for each i € Zr, a returning sequence- wi output nodes, 1s :

the function LSTMy : (%;)icz, ~ (I;)icz,. with h; € RV and . SN

hi = 0; Ofanh(c;), f,- = O’(X,'Wf + h;_]Uf — bf), E L ST]\ i
G=JioG+ fioc, Ji=o@W;+h_U; +bj), :
0; =0 XW,+h;_1U;+b,), ci=0@Wc+h_Uc+b),

(2)

where © is the Hadamard product, o(x):=1/(1+e™), W, e
RN U, € RV*N are weight matrices and bj are bias vectors, with

le{o, f, j, c}.

PHILIPS

NE

(Conv + RNN) : — Graph Structural Patterns; — Temporal Patterns

Model 1. The most straightforward definition is to stack a graph CNN, defined as (5), for feature
extraction and an LSTM, defined as (2), for sequence learning:

SN — CNNg(z¢)
i = o(Waizg™™ + Whihy—1 + wei © ci—1 + bj),
f =Wyt + Whshi—1 + wep @ ci—1 + by),
¢t = fi @ i1 + iy © tanh(Wez™N + Whohi_1 + be),
0= 0(WaoxS™N 4+ Whohi_1 + Weo © s + bo),

hi = 0 ® tanh(c;).

In that setting, the input matrix z; € R™*% may represent the observation of d, measurements at
time ¢ of a dynamical system over a network whose organization is given by a graph G. NN is the
output of the graph CNN gate. For a proof of concept, we simply choose here z§™N = Wy x,,
where WONN ¢ RE*dzXd= are the Chebyshev coefficients for the graph convolutional kernels of
support K. The model also holds spatially distributed hidden and cell states of size d}, given by the
matrices c;, hy € R™*% . Peepholes are controlled by w.. € R™*%"_ The weights W},. € R xdn
and W,. € R% >4 are the parameters of the fully connected layers. An architecture such as (8)
may be enough to capture the data distribution by exploiting local stationarity and compositionality
properties as well as the dynamic properties.

w
v

(Idea is from ConvLSTM)

N structure of EvolveGCN with a EGCU-O layer [71]. The EGCU-O layer constitute the GC (graph

convolutlon) and the W-LSTM (LSTM for GC weights). W-LSTM is used to initialize the weights of the GC.

https://arxiv.org/pdf/1612.07659.pdf

(Idea is from ConvLSTM)

Model 2. To generalize the convLSTM model (6) to graphs we replace the Euclidean 2D convo-
lution * by the graph convolution *g:

i =0 (Wai xg Tt + Whi xg b1 + We; © ci—1 + b5),

[=0(Wgs*g ¢t + Wiy *g hi—1 + wer © ci—1 + by),
¢t = ft © ct—1 + 3¢ © tanh(Wye xg &4 + Whe *g he—1 + be), ©)
0= U(Wmo *g Tt + Who *g ht—l + Weo © €t + bo),

ht =00® ta.nh(ct).

In that setting, the support K of the graph convolutional kernels defined by the Chebyshev coeffi-
cients Wj,. € RE*dnXdn and W,. € RE*9nXdz determines the number of parameters, which is
independent of the number of nodes n. To keep the notation simple, we write W,; g x; to mean a
graph convolution of z; with d},d,, filters which are functions of the graph Laplacian L parametrized
by K Chebyshev coefficients, as noted in (4) and (5). In a distributed computing setting, K controls
the communication overhead, i.e. the number of nodes any given node % should exchange with in
order to compute its local states.

PHILIPS
"/

: Input Node Features — Node Embedding
: Process; : Result
(Node Embedding = Node Vector = Node Representation)
: Sparse and High dimension; : Dense and Low dimension

: maintain and update a

- - - -» Newly emerging edge .lnteracfngnodes
(@ Notinvolved nodes

Figure 1: An overview of DGNN when a new interaction happened at time #7 from v to vs. The two interacting nodes are v
and vs. The nodes {vy, v3, vg, v7} are assumed to be the influenced nodes.

https://arxiv.org/abs/1810.10627

1. dynamics "of the network" ()

2. dynamics "on the network" ()

tygar tsger M | Evolution

tiie=1 i b2h=te g
< = through Embedding
tig=1 }_‘ 7 o o Wl

‘, * bak=r i trr=n

(©

Evolving Representations drive u,(£,) ua(t,)

—

Association evolves

Communication evolves ‘ ‘ Node Representation
Node Representations

— Evolving Representations
drive Association
(b)

uy(fy) u2(ty) us(tq) uy(t,)
Figure 1: Evolution Through Mediation. (a) Association events (k=0) where the node or edge grows.

(c) Communication Events (k=1) where nodes interact with each other. For both these processes,
tpk=0 < (t1,t2,t3,t4,85)k=1 < tgr=0 < (t6,t7)k=1 < trk=0. (b) Evolving Representations.

https://openreview.net/pdf?id=HyePrhR5KX

GCN weights

o -
~—~—

hidden state

Node embedding

Time |

node embeddings GCN weights
l
GRU(HY
~—

input hidden state

Node embedding

Time 2

Time 3

GCN weights

GCN weights

~ =
=LsT™(WY,)
N

input

Figure 1: Schematic illustration of EvolveGCN. The RNN means a recurrent architecture in general (e.g., GRU, LSTM). We
suggest two options to evolve the GCN weights, treating them with different roles in the RNN. See the EvolveGCN-H version
and EvolveGCN-O version in Figure 2.

https://arxiv.org/abs/1902.10191

GCN weights node embeddings GCN weights GCN weights

= ——
w® =cru(H® , W)
~—— v W—*
hidden state input hidden state

Node Embedding

1: function [H"*V, W] = EGCU-H(A,, H", W)
2 w® =GrUHY, W)

3 HMY = GCeonv(4, HY, w®)

4: end function

e ——
(a) EvolveGCN-H, where the GCN parameters are hidden states of a recurrent architecture that takes node embeddings as input.

o

s N 2

(Ht(l+l)\' \' H(x+1)
/
\f/ , 1: function [H'™V, W] = BGCU-04,, HD, W)

N Jhe 2w =1sTMW "))
':W‘(?‘%”@_iw‘m:’ ' *T'Wé": - (Wi sccuo s B~ GCONV(A, BO, W)
/

Sana? < 4: end function

e

//
{5

~ -

-

(b) EvolveGCN-O, where the GCN parameters are input/outputs of a recurrent architecture.

PI:IIIPS
i ’
P
"/

Predicted graph G at ¢ty

IIII’

Graph generator (Decoder)

Message Passing Graph Neura

SR SS IR S S S S& T

tr—w trwi1 tr—

Figure 1: Illustration of the proposed architecture

https://arxiv.org/abs/2003.00842

Our Perspective &

1. Current Loop: — Can we jump the loop?
2. Can we employ Dynamic GCN method to our filed, e.g., EEG Signals Classification

3. Virtualize the dynamic process of the Graphs.

© Philips - Confidential

Thanks and any Questions?

