
© Philips - Confidential© Philips - Confidential

Shuyue Jia
shuyuej@ieee.org
Research Intern @ Tencent & Philips Research

Dynamic Graph Convolutional Neural Networks
From DNN → CNN & RNN → Spectral GCN → DGCN

November 2020

© Philips - Confidential

Learning Objectives: From Static to Dynamic Networks

• From DNN → CNN → GCN

• How to extend CNNs to graph-structured data?

• How to dynamically evolve / learn Graphs through timestamps?

Timestamps

(Traditional Approach, Structural Patterns)

(Latest Approach, Structural + Temporal Patterns)

© Philips - Confidential

Recall: Deep Learning (DL) - Neural Networks,
Convolutional Neural Networks (CNNs) - for Local-matter Signals,
Supervised Learning - Features Mapped to Labels

© Philips - Confidential

Recall: Traditional CNNs (Local Matter)
Automatic Feature Extraction for Signals in the Euclidean Domain

A Convolutional Neural Network (CNNs) Architecture includes:

1. Convolutional Layer (Conv)

2. Pooling Layer (Pool)

3. Fully-connected Layer (FC)

Image, volume, video: 2D, 3D → Euclidean domain

Sentence, word, sound: 1D → Euclidean domain

These domains have nice regular spatial structures.

© Philips - Confidential

Recall: CNNs’ Fully-connected Layer
(Gradient Descent Algorithm to update model parameters)

Recall Gradient Descent Algorithm:

Loss Function = | g(x) − f(x) |minimize

derivative

𝛼 =
𝜕(|g 𝑥 − 𝑓 𝑥 |)

𝜕𝑥

𝑥!"# = 𝑥! −𝜂𝛼

© Philips - Confidential

Recall: CNNs’ Fully-connected Layer (Multi-layer Perceptron)
(Gradient Descent Algorithm to update model parameters)

y =-
$

𝑤$𝑥$ +𝑏

𝑓 𝑦 =
1

1+ 𝑒%&
The parameters that we are training are

W (weights) and b (biases).

𝛼 =
𝜕(12 g 𝑥 − 𝑓 𝑥 2)

𝜕𝑥

𝑥!"# = 𝑥! −𝜂𝛼 𝑓 y =
1

1+ 𝑒%&

y =-
$

𝑤$𝑥$ +𝑏

dw =
𝜕(12 g 𝑥 − 𝑓 𝑥 2)

𝜕w

db =
𝜕(12 g 𝑥 − 𝑓 𝑥 2)

𝜕b

w!"# = w! −𝜂dw

b!"# = b! −𝜂db

Derivative of w and b
w.r.t. Loss Function (error) Gradient

Descent

Derivative (Gradient)
Update

Parameters

Learning Rate

© Philips - Confidential

Recall: CNNs’ Fully-connected Layer
(Back-propagation (error) Algorithm for model converge)

dw =
𝜕(12 g 𝑥 − 𝑓 𝑥 2)

𝜕w

db =
𝜕(12 g 𝑥 − 𝑓 𝑥 2)

𝜕b

𝑓 y =
1

1+ 𝑒%&

y =∑$𝑤$𝑥$ +𝑏

L =
1
2 g 𝑥 − 𝑓 𝑥 2

𝑓 𝑦 =
1

1+ 𝑒%&

y =∑$𝑤$𝑥$ +𝑏
dw = '(

')(+)
× ')(+)

'+
× '+
'-

= g 𝑥 − 𝑓 𝑦 ×[𝑓 y ×(1 − 𝑓 y)]×𝑋

Sigmoid Activation Function

Derivative of w and b w.r.t. Loss Function (error)

Chain Rule

g(x)

Labels
Model
Output

f(x)

Supervised Learning

© Philips - Confidential

Recall: CNNs’ Convolutional Layer (Weighted Sum)

W Filters f!"!"#
(kernel)

Input X$"$"#

Output O%"%"&

O 𝑖, j = X ∗ f i, j = -
1

-
2

X(i + m, j + n)f(m, n)

Cross Correlation Function, implemented by FFT, O(nlog(n)):

Why Convolutions?

1. Translation & Shift Invariance

2. Weights Sharing and Sparse Connectivity

3. Multi-scale (Hierarchical)

Activated by Rectified Linear Unit (ReLu) with Batch Normalization:

neuron = O i, j + b

BN =
neuron − batch mean

batch Standard Deviation
ReLu = max(BN, 0)

Convolution

Mathematical Biomedical NeuronO =
N + 2P − F

S
+ 1

Convolution Output Shape:

N: Input 2D Signals Size
P: Padding (Zero) Size
F: Filter Size
S: Stride Size

Num of Model Parameters: F×F×C×W+W = F3×C×(W+ 1)Active Conv (CVRR2017), Deformable Conv (ICCV2017)

© Philips - Confidential

Recall: CNNs’ Pooling Layer

Max Pooling:Averaged Pooling:

f4,6 = max7,89:
(S34"7,36"8)f4,6 = mean7,89:# (S34"7,36"8)

Why Pooling? 1. Down-sampling + Dimensionality Reduction

2. Enlarge Receptive Fields

3. Enhance Translation Invariance

© Philips - Confidential

Non-Euclidean data
Graph in the Non-Euclidean Domain

Limitation of Traditional CNN: Cannot handle Graph-structured Signals

© Philips - Confidential

Why Graphs?

1/2/3D tensor → Tree (Treebank) → Graph

1. Represent complex relationships of data

2. Contain more features of data

3. Contain topology information of data

© Philips - Confidential

Key Question:
→ Can we use Traditional CNNs on Graphs directly?

Answer 1: YES, we can!
• Represent Graph Signals as 2D Mesh ← Signals in the Euclidean Domain
• then use Traditional CNNs or RNNs

Reference: Making Sense of Spatio-Temporal Preserving Representations for EEG-Based Human Intention Recognition, IEEE Transactions on Cybernetics, 2019.

2D Mesh

https://ieeexplore.ieee.org/abstract/document/8698218?casa_token=ZrmcwArLF_sAAAAA:Gfy0CK5begj5Juyt3Y2k5flI-8e9lRH98qAU0xTOu68yW2YqgSrx4Z3N48BVT4QpHt9LZsVjtG0

© Philips - Confidential

Key Question:
→ Can we use Traditional CNNs on Graphs directly?

Answer 2: YES, we can!
• Use Graph Theory to represent Graph Signals ← Signals in the Euclidean Domain
• then use Traditional CNNs or RNNs

Reference: A Graph-Based Hierarchical Attention Model for Movement Intention Detection from EEG Signals,
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019.

e.g., Adjacency Matrix, Laplacian Matrix

Graph
Representation

https://ieeexplore.ieee.org/document/8847648

© Philips - Confidential

Key Question:
→ Can we use Traditional CNNs on Graphs directly?

Answer 3: NO, we cannot!

• Graphs are irregular! (1. unordered 2. vary in size)

→ Convolution cannot keep translation invariance on the non-Euclidean signals

node

edge
0.7

Weight

OUR QUESTION
Can we intrinsically and mathematically

implement CNNs on Graph
to learn the node(s) and edge(s) representations?

That’s why we discuss GCN here!!!

© Philips - Confidential

Definitions

• Graph Representation → Graph Laplacian

• Graph Convolution → Spectral Graph Theory

• Vertex-focused V.S. Graph-focused

Temporally fine-grained Model Taxonomy:

• Static Networks → Static Network without temporal information

• Edge Weighted Networks → Static Network with temporal information as labels on the edge(s) / Node(s)

• Discrete Networks → Dynamic Networks in discrete time intervals

• Continuous Networks → Dynamic Networks without temporal aggregation

Problem Definition

Measurements (for Classification)
• Metrics: Accuracy, Precision, Recall, F1-Score, Confusion Matrix, ROC Curve, AUC, Kappa Coefficient, ……

• Loss function: Cross-entropy, Negative Log-likelihood (NLL), ……

Keywords
• Graph Convolutional Neural Networks, Graph CNN, GCN, GNN, …

• Dynamic Graph Convolutional Neural Networks, Dynamic GCN, Dynamic GNN, DGNN, DGCN, …

© Philips - Confidential

Graph Representation: Laplacian Matrix in Graph Theory

Graph Description: Undirected and Weighted Graph: G = V, E, A
– V: nodes (vertices), |V| = N
– E: edges (links) that connected nodes
– A: weights / correlations between nodes

Nodes: different sensors, observations, or data points.
Edges: connections, similarities, or correlations among those points.

Correlations representation: Pearson Matrix
– Measure the linear correlations between nodes
– Below, 𝜇 is the expectation, 𝜎 is the standard deviation, and P",$ is the Pearson Correlation Coefficient (PCC) between two nodes

P",$ =
E((x − µ")(y − µ$))

σ"σ$
– Absolute Pearson Matrix: |P",$| ⟹ X ∈ R|&|"' (Vertex-features Matrix)
Graph Weights representation: Adjacency Matrix: A ∈ R & "|&| = P",$ − I, I is an Identity Matrix
Graph Degrees representation: Degree Matrix

D((=8
)*+

,

A()

Graph representation: Graph Laplacian (Laplacian Matrix, Combinatorial Laplacian)
L = D − A

Normalized Graph Laplacian:
L = I, − D

-+.AD
+
.

1. Weights
2. Degrees edge

0.7
Weight

© Philips - Confidential

Why use Laplacian Matrix?
Intuitively

• Contain Graph Weights and Degrees → Represent Graph

• Non-zero: central node and its 1-hop neighbors; The others are all zeros!

• Laplacian Matrix = Discrete Laplace Operator

Mathematically

Semi-definite Matrix

» n!" orthogonal eigenvectors → Spectral Decomposition → Extract graph’ Spatial Info from Spectral domain

» Eigenvectors = Discrete Laplace Operator’s characteristic function (Ch.f.): e%;<=

»All eigenvalues are positive

Symmetric Matrix

» Eigenvectors U → Definite Matrix U#U =E

© Philips - Confidential

Graph Convolution Timeline

© Philips - Confidential

Spatial Convolution V.S. Spectral Convolution

Spatial Convolution (Vertex / Spatial Domain) → Mainstream (Until 10/07/2020)

• Applied to Nodes’ Neighbors directly in the Spatial domain to aggregate features

• Cons:

1. No static neighbors’ structure

2. Nodes unordered

3. Output dimension changed, hard to process later

• Representation Model: GNN, GraphSAGE, GAT, PGC

© Philips - Confidential

Spatial Convolution V.S. Spectral Convolution

Spectral Convolution (Spectral / Frequency Domain)

• Signals (Spatial) → Signals (Frequency) → Signals (Spatial)

• Cons:

1. Only undirected graphs are applicable → Cannot use Spectral Convolution

Lots of scenarios are directed graphs → W;> ≠ W>;

2. Cannot change Graph Structure (Graph Laplacian) during Training

3. SCNN high Time Complexity O(n3), and ChebNet and GCN few parameters weaken model performance

• Representation Model: SCNN, ChebNet, GCN

© Philips - Confidential

Recall: Spectral Theorem

Let A ∈ R:;: be symmetric, and λ< ∈ R (i = 1,2,3, … , n), n be the eigenvalues of A. There exists

a set of orthonormal vectors u< ∈ R: (i = 1,2,3, … , n), such that Au< = λ<u<. Equivalently, there

exists an orthonormal matrix U = [u=, u>, … , u:] ∈ R:;:, such that UU? = U?U = I:

A = UΛU? =5
<@=

:

𝜆<u<u<?

Λ = diag(𝜆=, 𝜆>, … , 𝜆:)

© Philips - Confidential

Recall: Fourier Transform F w = F 𝑓 𝑡 = &𝑓(𝑡)e!"#$d𝑡

© Philips - Confidential

Spectral Theorem for Graph Laplacian

L = UΛU?

LU = ΛU

– U: Fourier modes, which are real and orthonormal eigenvectors of L (self-adjointness)

– Λ : Fourier Frequencies, where the diagonal is the ordered real nonnegative eigenvalues of L (positive-semidefiniteness)

Graph Fourier Transform

F 𝑓 𝜆% = ,𝑓 𝜆% =< 𝑓, U% >=1
"&'

(

𝑓 𝑖 ∗ U%(𝑖)

,𝑓 𝜆% is the projection value of Fourier basis U% w.r.t. f

can be seen as e%;<=

,𝑓 𝜆 = U)𝑓⟺ 𝑓 = U ,𝑓 𝜆

© Philips - Confidential

Illustration Fourier Basis

© Philips - Confidential

Graph Convolution

(𝑓 ∗ ℎ)*= 𝐹!'(,𝑓(𝑤)×9ℎ(𝑤))

(𝑓 ∗ ℎ)*= 𝐹!'(U)𝑓 ⊙ (U)ℎ))

,𝑓 𝜆 = U)𝑓 Hamada Product
Element-wise Multiplication

(𝑓 ∗ ℎ)*= U (U)𝑓 ⊙ (U)ℎ))

𝑓 = U ,𝑓 𝜆

(𝑓 ∗ ℎ)*= U diag[9h 𝜆' , 9h 𝜆+ , … , 9h 𝜆(]U)𝑓
Graph Convolution

“prototype”

[n x n] [n x n] [n x n] [n x d]

If d=1:
Output Shape: [n x n]

otherwise:
Output Shape: [n x d] or

[n x n x d]

𝐹 𝑓 ∗ ℎ * = ,𝑓 𝑤 ×9ℎ(𝑤)

© Philips - Confidential

Spectral Graph Convolution Timeline

(𝑓 ∗ ℎ)*= U diag[9h 𝜆' , 9h 𝜆+ , … , 9h 𝜆(]U)𝑓

Timeline

1'(Generation: SCNN

NIPS 2014 NIPS 2016

2)* Generation: ChebNet 3+* Generation: ChebNet

ICLR 2017

4(, Generation: GCN

𝒴 = 𝜎(Ug/U0𝜒)
g/ = diag[𝜃+, 𝜃., … , 𝜃1]

𝒴 = 𝜎 8
2*3

4

𝜃2 L5𝜒 𝒴 = 𝜎 8
2*3

4-+

𝜃2 T2 ML 𝜒

ML =
2

𝜆67"
L − I,

𝒴 = 𝜎 𝜃D-
+
.PAD-

+
.𝜒

© Philips - Confidential

1BC Generation Graph Convolution: SCNN

(𝑓 ∗ ℎ)*= U diag[9h 𝜆' , 9h 𝜆+ , … , 9h 𝜆(]U)𝑓

𝒴 = 𝜎(Ug,U)𝜒)
g, = diag[𝜃', 𝜃+, … , 𝜃(]

Cons:

1. Global Convolution → No Local Connection, no Weights Sharing

2. O(n3) Spectral Decomposition

Activation Function

Model Parameters: n×Input_size×num_cilter + num_cilter = n×Input_size×(num_cilter + 1)
Reference: Spectral Networks and Locally Connected Networks on Graphs, NIPS, 2014.

https://arxiv.org/abs/1312.6203

© Philips - Confidential

2HI Generation Graph Convolution
(𝑓 ∗ ℎ)*= U diag[9h 𝜆' , 9h 𝜆+ , … , 9h 𝜆(]U)𝑓

𝒴 = 𝜎(Ug,U)𝜒)

Activation Function

𝒴 = 𝜎(Ug,(Λ)U)𝜒)
Λ = diag(𝜆', 𝜆+, … , 𝜆()

g, Λ = 1
%&-

.

𝜃%Λ%Approximate

Kth Polynomial Function

𝒴 = 𝜎 U1
%&-

.

𝜃%Λ% U)𝜒 = 𝜎 1
%&-

.

𝜃% (UΛ%U))𝜒 = 𝜎 1
%&-

.

𝜃% (UΛU))/𝜒 = 𝜎 1
%&-

.

𝜃% L/𝜒

𝒴 = 𝜎 1
%&-

.

𝜃% L/𝜒

Reference: Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, NIPS, 2016.

http://papers.nips.cc/paper/6081-convolutional-neural-networks-on-graphs-with-fast-localized-spectral-filtering.pdf

© Philips - Confidential

2HI Generation Graph Convolution

𝒴 = 𝜎 1
%&-

.

𝜃% L/𝜒

Pros:

1. No need for Spectral Decomposition

2. Less number of parameters (decrease model complexity) → K ≪ n

Cons:

Need to compute LQ, O(n2)

Weights Sharing → Translation Invariance

Local connectivity
No need for Fourier

Convolution:
Weighted Sum

x2D< ← Lx; =-
>

A;>(x; − x>)

GCN Key Idea: Use "edge information" to "aggregate" "node information" to generate a new "node representation"

Model Parameters:
K×Input_size×num_cilter + num_cilter = K×Input_size×(num_cilter + 1)

“Node Aggregation”
K is Filter Size

“Laplace Operator”

© Philips - Confidential

3LI Generation Graph Convolution (ChebNet)

(𝑓 ∗ ℎ)*= U diag[9h 𝜆' , 9h 𝜆+ , … , 9h 𝜆(]U)𝑓

𝒴 = 𝜎(Ug,U)𝜒)

g, ≈ 1
%&-

.!'

𝜃% T% OΛ

OΛ =
2

𝜆012
Λ − I3

Approximate
Kth Chebyshev polynomial

𝒴 = 𝜎 1
%&-

.!'

𝜃% T% 9L 𝜒

TE x = 2xTE%# x − TE%3 x
T: = 1
T# = x

9L =
2

𝜆012
L − I3

Reference: Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering, NIPS, 2016.

http://papers.nips.cc/paper/6081-convolutional-neural-networks-on-graphs-with-fast-localized-spectral-filtering.pdf

© Philips - Confidential

Pros:

1. No need for Spectral Decomposition

2. No need for LQ

3. Less number of parameters (decrease model complexity) → K ≪ n

4. O(n) Time Complexity

𝒴 = 𝜎 1
%&-

.!'

𝜃% T% 9L 𝜒

9L =
2

𝜆012
L − I3

3LI Generation Graph Convolution: ChebNet

Model Parameters: K×Input_size×num_cilter + num_cilter = K×Input_size×(num_cilter + 1)

© Philips - Confidential

4CS Generation Graph Convolution: GCN

𝒴 = 𝜎 1
%&-

.!'

𝜃% T% 9L 𝜒

9L =
2

𝜆012
L − I3

Assume K=1: ← Only consider 1th order Chebyshev Approximation
→ Two Parameters per filter

𝒴 = 𝜎 1
%&-

'

𝜃% T% 9L 𝜒 = 𝜎 𝜃-T- 9L 𝜒 + 𝜃'T' 9L 𝜒 = 𝜎 𝜃-𝜒 + 𝜃'9L𝜒

Kth Chebyshev polynomial

TE x = 2xTE%# x − TE%3 x
T: = 1
T# = x

Assume 𝜆RS; =2:

𝒴 = 𝜎 𝜃-𝜒 + 𝜃'9L𝜒 = 𝜎 𝜃-𝜒 + 𝜃'(L − I3)𝜒

L = D!
'
+(D − A)D!

'
+

Reference: Semi-Supervised Classification with Graph Convolutional Networks, ICLR, 2017.

https://arxiv.org/abs/1609.02907

© Philips - Confidential

4CS Generation Graph Convolution: GCN
Assume K=1:

𝒴 = 𝜎 1
%&-

'

𝜃% T% 9L 𝜒 = 𝜎 𝜃-T- 9L 𝜒 + 𝜃'T' 9L 𝜒 = 𝜎 𝜃-𝜒 + 𝜃'9L𝜒

Assume 𝜆RS; =2:

𝒴 = 𝜎 𝜃-𝜒 + 𝜃'9L𝜒 = 𝜎 𝜃-𝜒 + 𝜃'(L − I3)𝜒

L = D!
'
+(D − A)D!

'
+

𝒴 = 𝜎 𝜃-𝜒 + 𝜃'(−D
!'+AD!

'
+)𝜒

Assume 𝜃 = 𝜃T = −𝜃= : One Parameter

𝒴 = 𝜎 𝜃(I3 + D
!'+AD!

'
+)𝜒

Assume >A = IU + A:
(renormalization trick) 𝒴 = 𝜎 𝜃D!

'
+OAD!

'
+𝜒

H(56') = D!
'
+OAD!

'
+H(5)W(5)

Eigenvalues ∈ [0, 2]

© Philips - Confidential

4CS Generation Graph Convolution: GCN

H(56') = D!
'
+OAD!

'
+H(5)W(5)

Pros:

1. Few trainable parameters: one parameter per filter

2. Only concern one-hop neighbor: Stacked GCN layer → enlarge receptive fields

Cons:

Few trainable parameters → Weaken the capability of the model

Model Parameters: Input_size×num_cilter + num_cilter = Input_size×(num_cilter + 1)

© Philips - Confidential

The GCN Models are AWESOME for Graph Signals!!!!!

As for real-life scenarios, the Graph should be
dynamically changed through time!!!

(Traditional GCN Model) Cons:
1. inability to manage dynamic vertex features
2. inability to manage dynamic edge connections

© Philips - Confidential

Definitions

• Dynamic Network: a network that changes over time (Time-Varying)

• Dynamic Graph Neural Networks: Graph Nodes (Node Dynamics) and Edges (Link Duration)

appear and/or disappear over time

Exploit graph spatial and dynamic (temporal) information about data

Problem Definition

Timestamps

snapshots event

© Philips - Confidential

Dynamic GNN: Graph Nodes (Node Dynamics) and Edges (Link Duration) appear and/or disappear over time

Graph Description: Undirected and unweighted Graph: G = V, E

– V: nodes (vertices), V = {(v, 𝑡F, 𝑡G)}

– E: edges (links) that connected nodes, E = {(u, v, 𝑡F, 𝑡G)}

– 𝑡F: start timestamp, 𝑡G: end timestamp

– u, v ∈ V

Problem Definition

Taxonomy

1. Temporal Networks: highly dynamic

2. Evolving Networks: Links persist longer

1. Continuous Networks: sequence of snapshots

2. Discrete Networks: sequence of time-events

© Philips - Confidential

Recall: RNN-based Model (Order Matter) for Time-series (Sequence) Signals

RNN-based Architecture
LSTM Model

LSTM Equations
Num of Parameters: 4×(Input_Size×h+h2+h)

Current Popular Model
TransformerPros: finding long and short range sequence dependencies

Cons: lack the ability to explicitly exploit graph-structured information

Input: [max_time x Input_dim]

© Philips - Confidential

Dynamic GNN: Graph Nodes (Node Dynamics) and Edges (Link Duration) appear and/or disappear over time

Problem Definition

Our Question: Can we use GCN ☞ encode graph structures

RNN ☞ process temporal information

Leverage structural and

temporal patterns

Can we combine them??

GCN + RNN

© Philips - Confidential

Dynamic GCN Models:

1. Continuous Networks: sequence of time-events

2. Discrete Networks: sequence of snapshots

© Philips - Confidential

Basic Idea:

© Philips - Confidential

Discrete Model 1:

Z=, … , ZV = GNN A=, X= , … , GNN AV, XV

H = vLSTMQ Z=, … , ZV =
LSTMQ V=WZ=, … , V=WZV

…
LSTMQ V:WZ=, … , V:WZV

A∈ R2H2: Adjacency Matrix

x ∈ R2HI : Nodes’ Features

Be advised that, theoretically,

this “GC” can be any Graph Convolution we discussed before!!

Z ∈ R: ; X

H ∈ RQ ; : ; V
RNN Model

(RNN,LSTM,

GRU, Transformer,…)

Stacked DGNNs (Conv + RNN) : GNN → Graph Structural Patterns; RNN → Temporal Patterns

Reference: Structured Sequence Modeling with Graph Convolutional Recurrent Networks, ICLR, 2017.

Filters are learning the structural

patterns of each snapshot!

https://arxiv.org/pdf/1612.07659.pdf

© Philips - Confidential

Discrete Model 1: Stacked DGNNs (Conv + RNN)

R J K H #
Reshape

© Philips - Confidential

Discrete Model 1:
Stacked DGNNs (Conv + RNN) : GNN → Graph Structural Patterns; RNN → Temporal Patterns

© Philips - Confidential

Discrete Model 2:
Integrated DGNNs (Idea is from ConvLSTM)

A∈ R2H2 : Adjacency Matrix

x ∈ R2HI : Nodes’ Features

ft = σ(Wf ∗G Xt + Uf ∗G ht−1 + wf ⊙ ct−1 + bf)
it = σ(Wi ∗G Xt + Ui ∗G ht−1 + wi ⊙ ct−1 + bi)
ct = ft ⊙ ct−1 + it ⊙ tanh(Wc ∗G Xt + Uc ∗G ht−1 + bc)
ot = σ(Wo ∗G Xt + Uo ∗G Ht−1 + wo ⊙ ct + bo)
ht = o ⊙ tanh(ct)

Graph Convolution

Reference: Structured Sequence Modeling with Graph Convolutional Recurrent Networks, ICLR, 2017.

https://arxiv.org/pdf/1612.07659.pdf

© Philips - Confidential

Discrete Model 2:
Integrated DGNNs (Idea is from ConvLSTM)

© Philips - Confidential

RNN-based Continuous Model: Streaming GNN

Update Node Embedding from source to target: Input Node Features x ∈ 𝑅LMN → Node Embedding

1. Compare: Node Embedding: Process; Node Vector: Result

(Node Embedding = Node Vector = Node Representation)

1. Compare: Input Node Features: Sparse and High dimension; Node Embedding: Dense and Low dimension

2. Streaming GNN: maintain and update a Hidden Representation on each node (Node Embedding)

[source node Embedding →→→ → → → → → target node Embedding]

• Update component → Update Node Embedding

• Propagation component → propagate the update

to the involved node neighbors

3. Each Component keeps Three States

• Interact Unit → Interaction Node Embedding

• Update / Propagate Unit

• Merge Unit → Update Node Embedding

Update Node Embedding

Reference: Streaming Graph Neural Networks, SIGIR, 2020.

https://arxiv.org/abs/1810.10627

© Philips - Confidential

Temporal Point Process (TPP) - Continuous Model: DyREP

Temporal Point Process (TPP)

1. dynamics "of the network" (topological evolution)

2. dynamics "on the network" (node communication)

Reference: DyRep: Learning Representations over Dynamic Graphs, ICLR, 2019.

https://openreview.net/pdf?id=HyePrhR5KX

© Philips - Confidential

EvolveGCN

Reference: EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs, AAAI, 2020.

RNN: Regulate GCN model (i.e., network parameters)

Weight Evolution for Node Embedding:

W=
(O)

https://arxiv.org/abs/1902.10191

© Philips - Confidential

EvolveGCN

Weight Evolution for Node Embedding:

Node features are informative:

Change of the structure:

Node Embedding

© Philips - Confidential

EvoNet – Predict the topology of future graphs

Reference: EvoNet: A Neural Network for Predicting the Evolution of Dynamic Graphs, 2020.

Sequence-to-sequence Model (Autoencoder)

FC + Softmax

https://arxiv.org/abs/2003.00842

© Philips - Confidential

Our Perspective

1. Current Loop: [GCN + RNN] → Can we jump the loop?

2. Can we employ Dynamic GCN method to our filed, e.g., EEG Signals Classification

3. Virtualize the dynamic process of the Graphs.

52

© Philips - Confidential© Philips - Confidential53

Thanks and any Questions?

