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12.22 (* *) Write down an expression for the expected complete-data log likelihood func­
tion for the factor analysis model, and hence derive the corresponding M step equa­
tions (12.69) and (12.70).

12.23 (*) III!I Draw a directed probabilistic graphical model representing a discrete
mixture of probabilistic PCA models in which each PCA model has its own values
of W, JL, and 0-

2
• Now draw a modified graph in which these parameter values are

shared between the components of the mixture.

12.24 (***) We saw in Section 2.3.7 that Student's t-distribution can be viewed as an
infinite mixture of Gaussians in which we marginalize with respect to a continu­
ous latent variable. By exploiting this representation, formulate an EM algorithm
for maximizing the log likelihood function for a multivariate Student's t-distribution
given an observed set of data points, and derive the forms of the E and M step equa­
tions.

12.25 (**) III!I Consider a linear-Gaussian latent-variable model having a latent space
distribution p(z) = N(xIO, I) and a conditional distribution for the observed vari­
able p(xlz) = N(xlWz + IL, <p) where <P is an arbitrary symmetric, positive­
definite noise covariance matrix. Now suppose that we make a nonsingular linear
transformation of the data variables x ---t Ax, where A is a D x D matrix. If
JLML' W ML and <PML represent the maximum likelihood solution corresponding to
the original untransformed data, show that AJLML' AWML, and A <PMLAT will rep­
resent the corresponding maximum likelihood solution for the transformed data set.
Finally, show that the form of the model is preserved in two cases: (i) A is a diagonal
matrix and <P is a diagonal matrix. This corresponds to the case of factor analysis.
The transformed <P remains diagonal, and hence factor analysis is covariant under
component-wise re-scaling of the data variables; (ii) A is orthogonal and <P is pro­
portional to the unit matrix so that <P = 0-

21. This corresponds to probabilistic PCA.
The transformed <P matrix remains proportional to the unit matrix, and hence proba­
bilistic PCA is covariant under a rotation of the axes of data space, as is the case for
conventional PCA.

\
12.26 (**) Show that any vector ai that satisfies (12.80) will also satisfy (12.79). Also,

show that for any solution of (12.80) having eigenvalue A, we can add any multiple
of an eigenvector of K having zero eigenvalue, and obtain a solution to (12.79)
that also has eigenvalue A. Finally, show that such modifications do not affect the
principal-component projection given by (12.82).

12.27 (* *) Show that the conventional linear PCA algorithm is recovered as a special case
of kernel PCA if we choose the linear kernel function given by k(x, x') = xT x'.

12.28 (* *) III!I Use the transformation property (1.27) of a probability density under
a change of variable to show that any density p(y) can be obtained from a fixed
density q(x) that is everywhere nonzero by making a nonlinear change of variable
y = f(x) in which f(x) is a monotonic function so that 0 :::; j'(x) < 00. Write
down the differential equation satisfied by f (x) and draw a diagram illustrating the
transformation of the density.



Exercises 603

12.29 (**)Em Suppose that two variables Zl and Z2 are independent so thatp(zl' Z2) =
P(Zl)P(Z2)' Show that the covariance matrix between these variables is diagonal.
This shows that independence is a sufficient condition for two variables to be un­
correlated. Now consider two variables Yl and Y2 in which -1 :0;; Yl :0;; 1 and
Y2 = yg. Write down the conditional distribution p(Y2IYl) and observe that this is
dependent on Yb showing that the two variables are not independent. Now show
that the covariance matrix between these two variables is again diagonal. To do this,
use the relation P(Yl, Y2) = P(YI )p(Y2IYl) to show that the off-diagonal terms are
zero. This counter-example shows that zero correlation is not a sufficient condition
for independence.





13
Sequential

Data

So far in this book, we have focussed primarily on sets of data points that were as-
sumed to be independent and identically distributed (i.i.d.). This assumption allowed
us to express the likelihood function as the product over all data points of the prob-
ability distribution evaluated at each data point. For many applications, however,
the i.i.d. assumption will be a poor one. Here we consider a particularly important
class of such data sets, namely those that describe sequential data. These often arise
through measurement of time series, for example the rainfall measurements on suc-
cessive days at a particular location, or the daily values of a currency exchange rate,
or the acoustic features at successive time frames used for speech recognition. An
example involving speech data is shown in Figure 13.1. Sequential data can also
arise in contexts other than time series, for example the sequence of nucleotide base
pairs along a strand of DNA or the sequence of characters in an English sentence.
For convenience, we shall sometimes refer to ‘past’ and ‘future’ observations in a
sequence. However, the models explored in this chapter are equally applicable to all
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Figure 13.1 Example of a spectro-
gram of the spoken words “Bayes’ theo-
rem” showing a plot of the intensity of the
spectral coefficients versus time index.

forms of sequential data, not just temporal sequences.
It is useful to distinguish between stationary and nonstationary sequential dis-

tributions. In the stationary case, the data evolves in time, but the distribution from
which it is generated remains the same. For the more complex nonstationary situa-
tion, the generative distribution itself is evolving with time. Here we shall focus on
the stationary case.

For many applications, such as financial forecasting, we wish to be able to pre-
dict the next value in a time series given observations of the previous values. In-
tuitively, we expect that recent observations are likely to be more informative than
more historical observations in predicting future values. The example in Figure 13.1
shows that successive observations of the speech spectrum are indeed highly cor-
related. Furthermore, it would be impractical to consider a general dependence of
future observations on all previous observations because the complexity of such a
model would grow without limit as the number of observations increases. This leads
us to consider Markov models in which we assume that future predictions are inde-
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Figure 13.2 The simplest approach to
modelling a sequence of ob-
servations is to treat them
as independent, correspond-
ing to a graph without links.

x1 x2 x3 x4

pendent of all but the most recent observations.
Although such models are tractable, they are also severely limited. We can ob-

tain a more general framework, while still retaining tractability, by the introduction
of latent variables, leading to state space models. As in Chapters 9 and 12, we shall
see that complex models can thereby be constructed from simpler components (in
particular, from distributions belonging to the exponential family) and can be read-
ily characterized using the framework of probabilistic graphical models. Here we
focus on the two most important examples of state space models, namely the hid-
den Markov model, in which the latent variables are discrete, and linear dynamical
systems, in which the latent variables are Gaussian. Both models are described by di-
rected graphs having a tree structure (no loops) for which inference can be performed
efficiently using the sum-product algorithm.

13.1. Markov Models

The easiest way to treat sequential data would be simply to ignore the sequential
aspects and treat the observations as i.i.d., corresponding to the graph in Figure 13.2.
Such an approach, however, would fail to exploit the sequential patterns in the data,
such as correlations between observations that are close in the sequence. Suppose,
for instance, that we observe a binary variable denoting whether on a particular day
it rained or not. Given a time series of recent observations of this variable, we wish
to predict whether it will rain on the next day. If we treat the data as i.i.d., then the
only information we can glean from the data is the relative frequency of rainy days.
However, we know in practice that the weather often exhibits trends that may last for
several days. Observing whether or not it rains today is therefore of significant help
in predicting if it will rain tomorrow.

To express such effects in a probabilistic model, we need to relax the i.i.d. as-
sumption, and one of the simplest ways to do this is to consider a Markov model.
First of all we note that, without loss of generality, we can use the product rule to
express the joint distribution for a sequence of observations in the form

p(x1, . . . ,xN ) =
N∏

n=1

p(xn|x1, . . . ,xn−1). (13.1)

If we now assume that each of the conditional distributions on the right-hand side
is independent of all previous observations except the most recent, we obtain the
first-order Markov chain, which is depicted as a graphical model in Figure 13.3. The
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Figure 13.3 A first-order Markov chain of ob-
servations {xn} in which the dis-
tribution p(xn|xn−1) of a particu-
lar observation xn is conditioned
on the value of the previous ob-
servation xn−1.

x1 x2 x3 x4

joint distribution for a sequence of N observations under this model is given by

p(x1, . . . ,xN ) = p(x1)
N∏

n=2

p(xn|xn−1). (13.2)

From the d-separation property, we see that the conditional distribution for observa-Section 8.2
tion xn, given all of the observations up to time n, is given by

p(xn|x1, . . . ,xn−1) = p(xn|xn−1) (13.3)

which is easily verified by direct evaluation starting from (13.2) and using the prod-
uct rule of probability. Thus if we use such a model to predict the next observationExercise 13.1
in a sequence, the distribution of predictions will depend only on the value of the im-
mediately preceding observation and will be independent of all earlier observations.

In most applications of such models, the conditional distributions p(xn|xn−1)
that define the model will be constrained to be equal, corresponding to the assump-
tion of a stationary time series. The model is then known as a homogeneous Markov
chain. For instance, if the conditional distributions depend on adjustable parameters
(whose values might be inferred from a set of training data), then all of the condi-
tional distributions in the chain will share the same values of those parameters.

Although this is more general than the independence model, it is still very re-
strictive. For many sequential observations, we anticipate that the trends in the data
over several successive observations will provide important information in predict-
ing the next value. One way to allow earlier observations to have an influence is to
move to higher-order Markov chains. If we allow the predictions to depend also on
the previous-but-one value, we obtain a second-order Markov chain, represented by
the graph in Figure 13.4. The joint distribution is now given by

p(x1, . . . ,xN ) = p(x1)p(x2|x1)
N∏

n=3

p(xn|xn−1,xn−2). (13.4)

Again, using d-separation or by direct evaluation, we see that the conditional distri-
bution of xn given xn−1 and xn−2 is independent of all observations x1, . . .xn−3.

Figure 13.4 A second-order Markov chain, in
which the conditional distribution
of a particular observation xn

depends on the values of the two
previous observations xn−1 and
xn−2.

x1 x2 x3 x4
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Figure 13.5 We can represent sequen-
tial data using a Markov chain of latent
variables, with each observation condi-
tioned on the state of the corresponding
latent variable. This important graphical
structure forms the foundation both for the
hidden Markov model and for linear dy-
namical systems.

zn−1 zn zn+1

xn−1 xn xn+1

z1 z2

x1 x2

Each observation is now influenced by two previous observations. We can similarly
consider extensions to an M th order Markov chain in which the conditional distri-
bution for a particular variable depends on the previous M variables. However, we
have paid a price for this increased flexibility because the number of parameters in
the model is now much larger. Suppose the observations are discrete variables hav-
ing K states. Then the conditional distribution p(xn|xn−1) in a first-order Markov
chain will be specified by a set of K −1 parameters for each of the K states of xn−1

giving a total of K(K − 1) parameters. Now suppose we extend the model to an
M th order Markov chain, so that the joint distribution is built up from conditionals
p(xn|xn−M , . . . ,xn−1). If the variables are discrete, and if the conditional distri-
butions are represented by general conditional probability tables, then the number
of parameters in such a model will have KM−1(K − 1) parameters. Because this
grows exponentially with M , it will often render this approach impractical for larger
values of M .

For continuous variables, we can use linear-Gaussian conditional distributions
in which each node has a Gaussian distribution whose mean is a linear function
of its parents. This is known as an autoregressive or AR model (Box et al., 1994;
Thiesson et al., 2004). An alternative approach is to use a parametric model for
p(xn|xn−M , . . . ,xn−1) such as a neural network. This technique is sometimes
called a tapped delay line because it corresponds to storing (delaying) the previous
M values of the observed variable in order to predict the next value. The number
of parameters can then be much smaller than in a completely general model (for ex-
ample it may grow linearly with M ), although this is achieved at the expense of a
restricted family of conditional distributions.

Suppose we wish to build a model for sequences that is not limited by the
Markov assumption to any order and yet that can be specified using a limited number
of free parameters. We can achieve this by introducing additional latent variables to
permit a rich class of models to be constructed out of simple components, as we did
with mixture distributions in Chapter 9 and with continuous latent variable models in
Chapter 12. For each observation xn, we introduce a corresponding latent variable
zn (which may be of different type or dimensionality to the observed variable). We
now assume that it is the latent variables that form a Markov chain, giving rise to the
graphical structure known as a state space model, which is shown in Figure 13.5. It
satisfies the key conditional independence property that zn−1 and zn+1 are indepen-
dent given zn, so that

zn+1 ⊥⊥ zn−1 | zn. (13.5)



610 13. SEQUENTIAL DATA

The joint distribution for this model is given by

p(x1, . . . ,xN , z1, . . . , zN ) = p(z1)

[
N∏

n=2

p(zn|zn−1)

]
N∏

n=1

p(xn|zn). (13.6)

Using the d-separation criterion, we see that there is always a path connecting any
two observed variables xn and xm via the latent variables, and that this path is never
blocked. Thus the predictive distribution p(xn+1|x1, . . . ,xn) for observation xn+1

given all previous observations does not exhibit any conditional independence prop-
erties, and so our predictions for xn+1 depends on all previous observations. The
observed variables, however, do not satisfy the Markov property at any order. We
shall discuss how to evaluate the predictive distribution in later sections of this chap-
ter.

There are two important models for sequential data that are described by this
graph. If the latent variables are discrete, then we obtain the hidden Markov model,
or HMM (Elliott et al., 1995). Note that the observed variables in an HMM maySection 13.2
be discrete or continuous, and a variety of different conditional distributions can be
used to model them. If both the latent and the observed variables are Gaussian (with
a linear-Gaussian dependence of the conditional distributions on their parents), then
we obtain the linear dynamical system.Section 13.3

13.2. Hidden Markov Models

The hidden Markov model can be viewed as a specific instance of the state space
model of Figure 13.5 in which the latent variables are discrete. However, if we
examine a single time slice of the model, we see that it corresponds to a mixture
distribution, with component densities given by p(x|z). It can therefore also be
interpreted as an extension of a mixture model in which the choice of mixture com-
ponent for each observation is not selected independently but depends on the choice
of component for the previous observation. The HMM is widely used in speech
recognition (Jelinek, 1997; Rabiner and Juang, 1993), natural language modelling
(Manning and Schütze, 1999), on-line handwriting recognition (Nag et al., 1986),
and for the analysis of biological sequences such as proteins and DNA (Krogh et al.,
1994; Durbin et al., 1998; Baldi and Brunak, 2001).

As in the case of a standard mixture model, the latent variables are the discrete
multinomial variables zn describing which component of the mixture is responsible
for generating the corresponding observation xn. Again, it is convenient to use a
1-of-K coding scheme, as used for mixture models in Chapter 9. We now allow the
probability distribution of zn to depend on the state of the previous latent variable
zn−1 through a conditional distribution p(zn|zn−1). Because the latent variables are
K-dimensional binary variables, this conditional distribution corresponds to a table
of numbers that we denote by A, the elements of which are known as transition
probabilities. They are given by Ajk ≡ p(znk = 1|zn−1,j = 1), and because they
are probabilities, they satisfy 0 � Ajk � 1 with

∑
k Ajk = 1, so that the matrix A
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Figure 13.6 Transition diagram showing a model whose la-
tent variables have three possible states corre-
sponding to the three boxes. The black lines
denote the elements of the transition matrix
Ajk.

A12

A23

A31

A21

A32

A13

A11

A22

A33

k = 1

k = 2

k = 3

has K(K−1) independent parameters. We can then write the conditional distribution
explicitly in the form

p(zn|zn−1,A) =
K∏

k=1

K∏
j=1

A
zn−1,jznk

jk . (13.7)

The initial latent node z1 is special in that it does not have a parent node, and so
it has a marginal distribution p(z1) represented by a vector of probabilities π with
elements πk ≡ p(z1k = 1), so that

p(z1|π) =
K∏

k=1

πz1k

k (13.8)

where
∑

k πk = 1.
The transition matrix is sometimes illustrated diagrammatically by drawing the

states as nodes in a state transition diagram as shown in Figure 13.6 for the case of
K = 3. Note that this does not represent a probabilistic graphical model, because
the nodes are not separate variables but rather states of a single variable, and so we
have shown the states as boxes rather than circles.

It is sometimes useful to take a state transition diagram, of the kind shown in
Figure 13.6, and unfold it over time. This gives an alternative representation of the
transitions between latent states, known as a lattice or trellis diagram, and which isSection 8.4.5
shown for the case of the hidden Markov model in Figure 13.7.

The specification of the probabilistic model is completed by defining the con-
ditional distributions of the observed variables p(xn|zn, φ), where φ is a set of pa-
rameters governing the distribution. These are known as emission probabilities, and
might for example be given by Gaussians of the form (9.11) if the elements of x are
continuous variables, or by conditional probability tables if x is discrete. Because
xn is observed, the distribution p(xn|zn, φ) consists, for a given value of φ, of a
vector of K numbers corresponding to the K possible states of the binary vector zn.
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Figure 13.7 If we unfold the state transition dia-
gram of Figure 13.6 over time, we obtain a lattice,
or trellis, representation of the latent states. Each
column of this diagram corresponds to one of the
latent variables zn.

k = 1

k = 2

k = 3

n − 2 n − 1 n n + 1

A11 A11 A11

A33 A33 A33

We can represent the emission probabilities in the form

p(xn|zn, φ) =
K∏

k=1

p(xn|φk)znk . (13.9)

We shall focuss attention on homogeneous models for which all of the condi-
tional distributions governing the latent variables share the same parameters A, and
similarly all of the emission distributions share the same parameters φ (the extension
to more general cases is straightforward). Note that a mixture model for an i.i.d. data
set corresponds to the special case in which the parameters Ajk are the same for all
values of j, so that the conditional distribution p(zn|zn−1) is independent of zn−1.
This corresponds to deleting the horizontal links in the graphical model shown in
Figure 13.5.

The joint probability distribution over both latent and observed variables is then
given by

p(X,Z|θ) = p(z1|π)

[
N∏

n=2

p(zn|zn−1,A)

]
N∏

m=1

p(xm|zm, φ) (13.10)

where X = {x1, . . . ,xN}, Z = {z1, . . . , zN}, and θ = {π,A, φ} denotes the set
of parameters governing the model. Most of our discussion of the hidden Markov
model will be independent of the particular choice of the emission probabilities.
Indeed, the model is tractable for a wide range of emission distributions including
discrete tables, Gaussians, and mixtures of Gaussians. It is also possible to exploit
discriminative models such as neural networks. These can be used to model theExercise 13.4
emission density p(x|z) directly, or to provide a representation for p(z|x) that can
be converted into the required emission density p(x|z) using Bayes’ theorem (Bishop
et al., 2004).

We can gain a better understanding of the hidden Markov model by considering
it from a generative point of view. Recall that to generate samples from a mixture of
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Figure 13.8 Illustration of sampling from a hidden Markov model having a 3-state latent variable z and a
Gaussian emission model p(x|z) where x is 2-dimensional. (a) Contours of constant probability density for the
emission distributions corresponding to each of the three states of the latent variable. (b) A sample of 50 points
drawn from the hidden Markov model, colour coded according to the component that generated them and with
lines connecting the successive observations. Here the transition matrix was fixed so that in any state there is a
5% probability of making a transition to each of the other states, and consequently a 90% probability of remaining
in the same state.

Gaussians, we first chose one of the components at random with probability given by
the mixing coefficients πk and then generate a sample vector x from the correspond-
ing Gaussian component. This process is repeated N times to generate a data set of
N independent samples. In the case of the hidden Markov model, this procedure is
modified as follows. We first choose the initial latent variable z1 with probabilities
governed by the parameters πk and then sample the corresponding observation x1.
Now we choose the state of the variable z2 according to the transition probabilities
p(z2|z1) using the already instantiated value of z1. Thus suppose that the sample for
z1 corresponds to state j. Then we choose the state k of z2 with probabilities Ajk

for k = 1, . . . , K. Once we know z2 we can draw a sample for x2 and also sample
the next latent variable z3 and so on. This is an example of ancestral sampling for
a directed graphical model. If, for instance, we have a model in which the diago-Section 8.1.2
nal transition elements Akk are much larger than the off-diagonal elements, then a
typical data sequence will have long runs of points generated from a single compo-
nent, with infrequent transitions from one component to another. The generation of
samples from a hidden Markov model is illustrated in Figure 13.8.

There are many variants of the standard HMM model, obtained for instance by
imposing constraints on the form of the transition matrix A (Rabiner, 1989). Here we
mention one of particular practical importance called the left-to-right HMM, which
is obtained by setting the elements Ajk of A to zero if k < j, as illustrated in the
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Figure 13.9 Example of the state transition diagram for a 3-state
left-to-right hidden Markov model. Note that once a
state has been vacated, it cannot later be re-entered.

k = 1 k = 2 k = 3

A11 A22 A33

A12 A23

A13

state transition diagram for a 3-state HMM in Figure 13.9. Typically for such models
the initial state probabilities for p(z1) are modified so that p(z11) = 1 and p(z1j) = 0
for j 	= 1, in other words every sequence is constrained to start in state j = 1. The
transition matrix may be further constrained to ensure that large changes in the state
index do not occur, so that Ajk = 0 if k > j + ∆. This type of model is illustrated
using a lattice diagram in Figure 13.10.

Many applications of hidden Markov models, for example speech recognition,
or on-line character recognition, make use of left-to-right architectures. As an illus-
tration of the left-to-right hidden Markov model, we consider an example involving
handwritten digits. This uses on-line data, meaning that each digit is represented
by the trajectory of the pen as a function of time in the form of a sequence of pen
coordinates, in contrast to the off-line digits data, discussed in Appendix A, which
comprises static two-dimensional pixellated images of the ink. Examples of the on-
line digits are shown in Figure 13.11. Here we train a hidden Markov model on a
subset of data comprising 45 examples of the digit ‘2’. There are K = 16 states,
each of which can generate a line segment of fixed length having one of 16 possible
angles, and so the emission distribution is simply a 16 × 16 table of probabilities
associated with the allowed angle values for each state index value. Transition prob-
abilities are all set to zero except for those that keep the state index k the same or
that increment it by 1, and the model parameters are optimized using 25 iterations of
EM. We can gain some insight into the resulting model by running it generatively, as
shown in Figure 13.11.

Figure 13.10 Lattice diagram for a 3-state left-
to-right HMM in which the state index k is allowed
to increase by at most 1 at each transition. k = 1

k = 2

k = 3

n − 2 n − 1 n n + 1

A11 A11 A11

A33 A33 A33
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Figure 13.11 Top row: examples of on-line handwritten
digits. Bottom row: synthetic digits sam-
pled generatively from a left-to-right hid-
den Markov model that has been trained
on a data set of 45 handwritten digits.

One of the most powerful properties of hidden Markov models is their ability to
exhibit some degree of invariance to local warping (compression and stretching) of
the time axis. To understand this, consider the way in which the digit ‘2’ is written
in the on-line handwritten digits example. A typical digit comprises two distinct
sections joined at a cusp. The first part of the digit, which starts at the top left, has a
sweeping arc down to the cusp or loop at the bottom left, followed by a second more-
or-less straight sweep ending at the bottom right. Natural variations in writing style
will cause the relative sizes of the two sections to vary, and hence the location of the
cusp or loop within the temporal sequence will vary. From a generative perspective
such variations can be accommodated by the hidden Markov model through changes
in the number of transitions to the same state versus the number of transitions to the
successive state. Note, however, that if a digit ‘2’ is written in the reverse order, that
is, starting at the bottom right and ending at the top left, then even though the pen tip
coordinates may be identical to an example from the training set, the probability of
the observations under the model will be extremely small. In the speech recognition
context, warping of the time axis is associated with natural variations in the speed of
speech, and again the hidden Markov model can accommodate such a distortion and
not penalize it too heavily.

13.2.1 Maximum likelihood for the HMM
If we have observed a data set X = {x1, . . . ,xN}, we can determine the param-

eters of an HMM using maximum likelihood. The likelihood function is obtained
from the joint distribution (13.10) by marginalizing over the latent variables

p(X|θ) =
∑
Z

p(X,Z|θ). (13.11)

Because the joint distribution p(X,Z|θ) does not factorize over n (in contrast to the
mixture distribution considered in Chapter 9), we cannot simply treat each of the
summations over zn independently. Nor can we perform the summations explicitly
because there are N variables to be summed over, each of which has K states, re-
sulting in a total of KN terms. Thus the number of terms in the summation grows
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exponentially with the length of the chain. In fact, the summation in (13.11) cor-
responds to summing over exponentially many paths through the lattice diagram in
Figure 13.7.

We have already encountered a similar difficulty when we considered the infer-
ence problem for the simple chain of variables in Figure 8.32. There we were able
to make use of the conditional independence properties of the graph to re-order the
summations in order to obtain an algorithm whose cost scales linearly, instead of
exponentially, with the length of the chain. We shall apply a similar technique to the
hidden Markov model.

A further difficulty with the expression (13.11) for the likelihood function is that,
because it corresponds to a generalization of a mixture distribution, it represents a
summation over the emission models for different settings of the latent variables.
Direct maximization of the likelihood function will therefore lead to complex ex-
pressions with no closed-form solutions, as was the case for simple mixture modelsSection 9.2
(recall that a mixture model for i.i.d. data is a special case of the HMM).

We therefore turn to the expectation maximization algorithm to find an efficient
framework for maximizing the likelihood function in hidden Markov models. The
EM algorithm starts with some initial selection for the model parameters, which we
denote by θold. In the E step, we take these parameter values and find the posterior
distribution of the latent variables p(Z|X, θold). We then use this posterior distri-
bution to evaluate the expectation of the logarithm of the complete-data likelihood
function, as a function of the parameters θ, to give the function Q(θ, θold) defined
by

Q(θ, θold) =
∑
Z

p(Z|X, θold) ln p(X,Z|θ). (13.12)

At this point, it is convenient to introduce some notation. We shall use γ(zn) to
denote the marginal posterior distribution of a latent variable zn, and ξ(zn−1, zn) to
denote the joint posterior distribution of two successive latent variables, so that

γ(zn) = p(zn|X, θold) (13.13)

ξ(zn−1, zn) = p(zn−1, zn|X, θold). (13.14)

For each value of n, we can store γ(zn) using a set of K nonnegative numbers
that sum to unity, and similarly we can store ξ(zn−1, zn) using a K × K matrix of
nonnegative numbers that again sum to unity. We shall also use γ(znk) to denote the
conditional probability of znk = 1, with a similar use of notation for ξ(zn−1,j , znk)
and for other probabilistic variables introduced later. Because the expectation of a
binary random variable is just the probability that it takes the value 1, we have

γ(znk) = E[znk] =
∑
z

γ(z)znk (13.15)

ξ(zn−1,j , znk) = E[zn−1,jznk] =
∑
z

γ(z)zn−1,jznk. (13.16)

If we substitute the joint distribution p(X,Z|θ) given by (13.10) into (13.12),
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and make use of the definitions of γ and ξ , we obtain

Q(θ, θold) =
K∑

k=1

γ(z1k) lnπk +
N∑

n=2

K∑
j=1

K∑
k=1

ξ(zn−1,j , znk) lnAjk

+
N∑

n=1

K∑
k=1

γ(znk) ln p(xn|φk). (13.17)

The goal of the E step will be to evaluate the quantities γ(zn) and ξ(zn−1, zn) effi-
ciently, and we shall discuss this in detail shortly.

In the M step, we maximize Q(θ, θold) with respect to the parameters θ =
{π,A, φ} in which we treat γ(zn) and ξ(zn−1, zn) as constant. Maximization with
respect to π and A is easily achieved using appropriate Lagrange multipliers with
the resultsExercise 13.5

πk =
γ(z1k)

K∑
j=1

γ(z1j)

(13.18)

Ajk =

N∑
n=2

ξ(zn−1,j , znk)

K∑
l=1

N∑
n=2

ξ(zn−1,j , znl)

. (13.19)

The EM algorithm must be initialized by choosing starting values for π and A, which
should of course respect the summation constraints associated with their probabilis-
tic interpretation. Note that any elements of π or A that are set to zero initially will
remain zero in subsequent EM updates. A typical initialization procedure wouldExercise 13.6
involve selecting random starting values for these parameters subject to the summa-
tion and non-negativity constraints. Note that no particular modification to the EM
results are required for the case of left-to-right models beyond choosing initial values
for the elements Ajk in which the appropriate elements are set to zero, because these
will remain zero throughout.

To maximize Q(θ, θold) with respect to φk, we notice that only the final term
in (13.17) depends on φk, and furthermore this term has exactly the same form as
the data-dependent term in the corresponding function for a standard mixture dis-
tribution for i.i.d. data, as can be seen by comparison with (9.40) for the case of a
Gaussian mixture. Here the quantities γ(znk) are playing the role of the responsibil-
ities. If the parameters φk are independent for the different components, then this
term decouples into a sum of terms one for each value of k, each of which can be
maximized independently. We are then simply maximizing the weighted log likeli-
hood function for the emission density p(x|φk) with weights γ(znk). Here we shall
suppose that this maximization can be done efficiently. For instance, in the case of
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Gaussian emission densities we have p(x|φk) = N (x|µk,Σk), and maximization
of the function Q(θ, θold) then gives

µk =

N∑
n=1

γ(znk)xn

N∑
n=1

γ(znk)

(13.20)

Σk =

N∑
n=1

γ(znk)(xn − µk)(xn − µk)T

N∑
n=1

γ(znk)

. (13.21)

For the case of discrete multinomial observed variables, the conditional distribution
of the observations takes the form

p(x|z) =
D∏

i=1

K∏
k=1

µxizk

ik (13.22)

and the corresponding M-step equations are given byExercise 13.8

µik =

N∑
n=1

γ(znk)xni

N∑
n=1

γ(znk)

. (13.23)

An analogous result holds for Bernoulli observed variables.
The EM algorithm requires initial values for the parameters of the emission dis-

tribution. One way to set these is first to treat the data initially as i.i.d. and fit the
emission density by maximum likelihood, and then use the resulting values to ini-
tialize the parameters for EM.

13.2.2 The forward-backward algorithm
Next we seek an efficient procedure for evaluating the quantities γ(znk) and

ξ(zn−1,j , znk), corresponding to the E step of the EM algorithm. The graph for the
hidden Markov model, shown in Figure 13.5, is a tree, and so we know that the
posterior distribution of the latent variables can be obtained efficiently using a two-
stage message passing algorithm. In the particular context of the hidden MarkovSection 8.4
model, this is known as the forward-backward algorithm (Rabiner, 1989), or the
Baum-Welch algorithm (Baum, 1972). There are in fact several variants of the basic
algorithm, all of which lead to the exact marginals, according to the precise form of
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the messages that are propagated along the chain (Jordan, 2007). We shall focus on
the most widely used of these, known as the alpha-beta algorithm.

As well as being of great practical importance in its own right, the forward-
backward algorithm provides us with a nice illustration of many of the concepts
introduced in earlier chapters. We shall therefore begin in this section with a ‘con-
ventional’ derivation of the forward-backward equations, making use of the sum
and product rules of probability, and exploiting conditional independence properties
which we shall obtain from the corresponding graphical model using d-separation.
Then in Section 13.2.3, we shall see how the forward-backward algorithm can be
obtained very simply as a specific example of the sum-product algorithm introduced
in Section 8.4.4.

It is worth emphasizing that evaluation of the posterior distributions of the latent
variables is independent of the form of the emission density p(x|z) or indeed of
whether the observed variables are continuous or discrete. All we require is the
values of the quantities p(xn|zn) for each value of zn for every n. Also, in this
section and the next we shall omit the explicit dependence on the model parameters
θold because these fixed throughout.

We therefore begin by writing down the following conditional independence
properties (Jordan, 2007)

p(X|zn) = p(x1, . . . ,xn|zn)
p(xn+1, . . . ,xN |zn) (13.24)

p(x1, . . . ,xn−1|xn, zn) = p(x1, . . . ,xn−1|zn) (13.25)

p(x1, . . . ,xn−1|zn−1, zn) = p(x1, . . . ,xn−1|zn−1) (13.26)

p(xn+1, . . . ,xN |zn, zn+1) = p(xn+1, . . . ,xN |zn+1) (13.27)

p(xn+2, . . . ,xN |zn+1,xn+1) = p(xn+2, . . . ,xN |zn+1) (13.28)

p(X|zn−1, zn) = p(x1, . . . ,xn−1|zn−1)
p(xn|zn)p(xn+1, . . . ,xN |zn) (13.29)

p(xN+1|X, zN+1) = p(xN+1|zN+1) (13.30)

p(zN+1|zN ,X) = p(zN+1|zN ) (13.31)

where X = {x1, . . . ,xN}. These relations are most easily proved using d-separation.
For instance in the first of these results, we note that every path from any one of the
nodes x1, . . . ,xn−1 to the node xn passes through the node zn, which is observed.
Because all such paths are head-to-tail, it follows that the conditional independence
property must hold. The reader should take a few moments to verify each of these
properties in turn, as an exercise in the application of d-separation. These relations
can also be proved directly, though with significantly greater effort, from the joint
distribution for the hidden Markov model using the sum and product rules of proba-
bility.Exercise 13.10

Let us begin by evaluating γ(znk). Recall that for a discrete multinomial ran-
dom variable the expected value of one of its components is just the probability of
that component having the value 1. Thus we are interested in finding the posterior
distribution p(zn|x1, . . . ,xN ) of zn given the observed data set x1, . . . ,xN . This
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represents a vector of length K whose entries correspond to the expected values of
znk. Using Bayes’ theorem, we have

γ(zn) = p(zn|X) =
p(X|zn)p(zn)

p(X)
. (13.32)

Note that the denominator p(X) is implicitly conditioned on the parameters θold

of the HMM and hence represents the likelihood function. Using the conditional
independence property (13.24), together with the product rule of probability, we
obtain

γ(zn) =
p(x1, . . . ,xn, zn)p(xn+1, . . . ,xN |zn)

p(X)
=

α(zn)β(zn)
p(X)

(13.33)

where we have defined

α(zn) ≡ p(x1, . . . ,xn, zn) (13.34)

β(zn) ≡ p(xn+1, . . . ,xN |zn). (13.35)

The quantity α(zn) represents the joint probability of observing all of the given
data up to time n and the value of zn, whereas β(zn) represents the conditional
probability of all future data from time n + 1 up to N given the value of zn. Again,
α(zn) and β(zn) each represent set of K numbers, one for each of the possible
settings of the 1-of-K coded binary vector zn. We shall use the notation α(znk) to
denote the value of α(zn) when znk = 1, with an analogous interpretation of β(znk).

We now derive recursion relations that allow α(zn) and β(zn) to be evaluated
efficiently. Again, we shall make use of conditional independence properties, in
particular (13.25) and (13.26), together with the sum and product rules, allowing us
to express α(zn) in terms of α(zn−1) as follows

α(zn) = p(x1, . . . ,xn, zn)
= p(x1, . . . ,xn|zn)p(zn)
= p(xn|zn)p(x1, . . . ,xn−1|zn)p(zn)
= p(xn|zn)p(x1, . . . ,xn−1, zn)

= p(xn|zn)
∑
zn−1

p(x1, . . . ,xn−1, zn−1, zn)

= p(xn|zn)
∑
zn−1

p(x1, . . . ,xn−1, zn|zn−1)p(zn−1)

= p(xn|zn)
∑
zn−1

p(x1, . . . ,xn−1|zn−1)p(zn|zn−1)p(zn−1)

= p(xn|zn)
∑
zn−1

p(x1, . . . ,xn−1, zn−1)p(zn|zn−1)

Making use of the definition (13.34) for α(zn), we then obtain

α(zn) = p(xn|zn)
∑
zn−1

α(zn−1)p(zn|zn−1). (13.36)
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Figure 13.12 Illustration of the forward recursion (13.36) for
evaluation of the α variables. In this fragment
of the lattice, we see that the quantity α(zn1)
is obtained by taking the elements α(zn−1,j) of
α(zn−1) at step n−1 and summing them up with
weights given by Aj1, corresponding to the val-
ues of p(zn|zn−1), and then multiplying by the
data contribution p(xn|zn1).

k = 1

k = 2

k = 3

n − 1 n

α(zn−1,1)

α(zn−1,2)

α(zn−1,3)

α(zn,1)
A11

A21

A31

p(xn|zn,1)

It is worth taking a moment to study this recursion relation in some detail. Note
that there are K terms in the summation, and the right-hand side has to be evaluated
for each of the K values of zn so each step of the α recursion has computational
cost that scaled like O(K2). The forward recursion equation for α(zn) is illustrated
using a lattice diagram in Figure 13.12.

In order to start this recursion, we need an initial condition that is given by

α(z1) = p(x1, z1) = p(z1)p(x1|z1) =
K∏

k=1

{πkp(x1|φk)}z1k (13.37)

which tells us that α(z1k), for k = 1, . . . , K, takes the value πkp(x1|φk). Starting
at the first node of the chain, we can then work along the chain and evaluate α(zn)
for every latent node. Because each step of the recursion involves multiplying by a
K × K matrix, the overall cost of evaluating these quantities for the whole chain is
of O(K2N).

We can similarly find a recursion relation for the quantities β(zn) by making
use of the conditional independence properties (13.27) and (13.28) giving

β(zn) = p(xn+1, . . . ,xN |zn)

=
∑
zn+1

p(xn+1, . . . ,xN , zn+1|zn)

=
∑
zn+1

p(xn+1, . . . ,xN |zn, zn+1)p(zn+1|zn)

=
∑
zn+1

p(xn+1, . . . ,xN |zn+1)p(zn+1|zn)

=
∑
zn+1

p(xn+2, . . . ,xN |zn+1)p(xn+1|zn+1)p(zn+1|zn).
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Figure 13.13 Illustration of the backward recursion
(13.38) for evaluation of the β variables. In
this fragment of the lattice, we see that the
quantity β(zn1) is obtained by taking the
components β(zn+1,k) of β(zn+1) at step
n + 1 and summing them up with weights
given by the products of A1k, correspond-
ing to the values of p(zn+1|zn) and the cor-
responding values of the emission density
p(xn|zn+1,k).

k = 1

k = 2

k = 3

n n + 1

β(zn,1) β(zn+1,1)

β(zn+1,2)

β(zn+1,3)

A11

A12

A13

p(xn|zn+1,1)

p(xn|zn+1,2)

p(xn|zn+1,3)

Making use of the definition (13.35) for β(zn), we then obtain

β(zn) =
∑
zn+1

β(zn+1)p(xn+1|zn+1)p(zn+1|zn). (13.38)

Note that in this case we have a backward message passing algorithm that evaluates
β(zn) in terms of β(zn+1). At each step, we absorb the effect of observation xn+1

through the emission probability p(xn+1|zn+1), multiply by the transition matrix
p(zn+1|zn), and then marginalize out zn+1. This is illustrated in Figure 13.13.

Again we need a starting condition for the recursion, namely a value for β(zN ).
This can be obtained by setting n = N in (13.33) and replacing α(zN ) with its
definition (13.34) to give

p(zN |X) =
p(X, zN )β(zN )

p(X)
(13.39)

which we see will be correct provided we take β(zN ) = 1 for all settings of zN .
In the M step equations, the quantity p(X) will cancel out, as can be seen, for

instance, in the M-step equation for µk given by (13.20), which takes the form

µk =

n∑
n=1

γ(znk)xn

n∑
n=1

γ(znk)

=

n∑
n=1

α(znk)β(znk)xn

n∑
n=1

α(znk)β(znk)

. (13.40)

However, the quantity p(X) represents the likelihood function whose value we typ-
ically wish to monitor during the EM optimization, and so it is useful to be able to
evaluate it. If we sum both sides of (13.33) over zn, and use the fact that the left-hand
side is a normalized distribution, we obtain

p(X) =
∑
zn

α(zn)β(zn). (13.41)
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Thus we can evaluate the likelihood function by computing this sum, for any conve-
nient choice of n. For instance, if we only want to evaluate the likelihood function,
then we can do this by running the α recursion from the start to the end of the chain,
and then use this result for n = N , making use of the fact that β(zN ) is a vector of
1s. In this case no β recursion is required, and we simply have

p(X) =
∑
zN

α(zN ). (13.42)

Let us take a moment to interpret this result for p(X). Recall that to compute the
likelihood we should take the joint distribution p(X,Z) and sum over all possible
values of Z. Each such value represents a particular choice of hidden state for every
time step, in other words every term in the summation is a path through the lattice
diagram, and recall that there are exponentially many such paths. By expressing
the likelihood function in the form (13.42), we have reduced the computational cost
from being exponential in the length of the chain to being linear by swapping the
order of the summation and multiplications, so that at each time step n we sum
the contributions from all paths passing through each of the states znk to give the
intermediate quantities α(zn).

Next we consider the evaluation of the quantities ξ(zn−1, zn), which correspond
to the values of the conditional probabilities p(zn−1, zn|X) for each of the K × K
settings for (zn−1, zn). Using the definition of ξ(zn−1, zn), and applying Bayes’
theorem, we have

ξ(zn−1, zn) = p(zn−1, zn|X)

=
p(X|zn−1, zn)p(zn−1, zn)

p(X)

=
p(x1, . . . ,xn−1|zn−1)p(xn|zn)p(xn+1, . . . ,xN |zn)p(zn|zn−1)p(zn−1)

p(X)

=
α(zn−1)p(xn|zn)p(zn|zn−1)β(zn)

p(X)
(13.43)

where we have made use of the conditional independence property (13.29) together
with the definitions of α(zn) and β(zn) given by (13.34) and (13.35). Thus we can
calculate the ξ(zn−1, zn) directly by using the results of the α and β recursions.

Let us summarize the steps required to train a hidden Markov model using
the EM algorithm. We first make an initial selection of the parameters θold where
θ ≡ (π,A, φ). The A and π parameters are often initialized either uniformly or
randomly from a uniform distribution (respecting their non-negativity and summa-
tion constraints). Initialization of the parameters φ will depend on the form of the
distribution. For instance in the case of Gaussians, the parameters µk might be ini-
tialized by applying the K-means algorithm to the data, and Σk might be initialized
to the covariance matrix of the corresponding K means cluster. Then we run both
the forward α recursion and the backward β recursion and use the results to evaluate
γ(zn) and ξ(zn−1, zn). At this stage, we can also evaluate the likelihood function.
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This completes the E step, and we use the results to find a revised set of parameters
θnew using the M-step equations from Section 13.2.1. We then continue to alternate
between E and M steps until some convergence criterion is satisfied, for instance
when the change in the likelihood function is below some threshold.

Note that in these recursion relations the observations enter through conditional
distributions of the form p(xn|zn). The recursions are therefore independent of
the type or dimensionality of the observed variables or the form of this conditional
distribution, so long as its value can be computed for each of the K possible states
of zn. Since the observed variables {xn} are fixed, the quantities p(xn|zn) can be
pre-computed as functions of zn at the start of the EM algorithm, and remain fixed
throughout.

We have seen in earlier chapters that the maximum likelihood approach is most
effective when the number of data points is large in relation to the number of parame-
ters. Here we note that a hidden Markov model can be trained effectively, using max-
imum likelihood, provided the training sequence is sufficiently long. Alternatively,
we can make use of multiple shorter sequences, which requires a straightforward
modification of the hidden Markov model EM algorithm. In the case of left-to-rightExercise 13.12
models, this is particularly important because, in a given observation sequence, a
given state transition corresponding to a nondiagonal element of A will seen at most
once.

Another quantity of interest is the predictive distribution, in which the observed
data is X = {x1, . . . ,xN} and we wish to predict xN+1, which would be important
for real-time applications such as financial forecasting. Again we make use of the
sum and product rules together with the conditional independence properties (13.29)
and (13.31) giving

p(xN+1|X) =
∑
zN+1

p(xN+1, zN+1|X)

=
∑
zN+1

p(xN+1|zN+1)p(zN+1|X)

=
∑
zN+1

p(xN+1|zN+1)
∑
zN

p(zN+1, zN |X)

=
∑
zN+1

p(xN+1|zN+1)
∑
zN

p(zN+1|zN )p(zN |X)

=
∑
zN+1

p(xN+1|zN+1)
∑
zN

p(zN+1|zN )
p(zN ,X)

p(X)

=
1

p(X)

∑
zN+1

p(xN+1|zN+1)
∑
zN

p(zN+1|zN )α(zN ) (13.44)

which can be evaluated by first running a forward α recursion and then computing
the final summations over zN and zN+1. The result of the first summation over zN

can be stored and used once the value of xN+1 is observed in order to run the α
recursion forward to the next step in order to predict the subsequent value xN+2.
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Figure 13.14 A fragment of the fac-
tor graph representation for the hidden
Markov model.

χ ψn

g1 gn−1 gn

z1 zn−1 zn

x1 xn−1 xn

Note that in (13.44), the influence of all data from x1 to xN is summarized in the K
values of α(zN ). Thus the predictive distribution can be carried forward indefinitely
using a fixed amount of storage, as may be required for real-time applications.

Here we have discussed the estimation of the parameters of an HMM using max-
imum likelihood. This framework is easily extended to regularized maximum likeli-
hood by introducing priors over the model parameters π, A and φ whose values are
then estimated by maximizing their posterior probability. This can again be done us-
ing the EM algorithm in which the E step is the same as discussed above, and the M
step involves adding the log of the prior distribution p(θ) to the function Q(θ, θold)
before maximization and represents a straightforward application of the techniques
developed at various points in this book. Furthermore, we can use variational meth-
ods to give a fully Bayesian treatment of the HMM in which we marginalize over theSection 10.1
parameter distributions (MacKay, 1997). As with maximum likelihood, this leads to
a two-pass forward-backward recursion to compute posterior probabilities.

13.2.3 The sum-product algorithm for the HMM
The directed graph that represents the hidden Markov model, shown in Fig-

ure 13.5, is a tree and so we can solve the problem of finding local marginals for the
hidden variables using the sum-product algorithm. Not surprisingly, this turns out toSection 8.4.4
be equivalent to the forward-backward algorithm considered in the previous section,
and so the sum-product algorithm therefore provides us with a simple way to derive
the alpha-beta recursion formulae.

We begin by transforming the directed graph of Figure 13.5 into a factor graph,
of which a representative fragment is shown in Figure 13.14. This form of the fac-
tor graph shows all variables, both latent and observed, explicitly. However, for
the purpose of solving the inference problem, we shall always be conditioning on
the variables x1, . . . ,xN , and so we can simplify the factor graph by absorbing the
emission probabilities into the transition probability factors. This leads to the sim-
plified factor graph representation in Figure 13.15, in which the factors are given
by

h(z1) = p(z1)p(x1|z1) (13.45)

fn(zn−1, zn) = p(zn|zn−1)p(xn|zn). (13.46)
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Figure 13.15 A simplified form of fac-
tor graph to describe the hidden Markov
model.

h fn

z1 zn−1 zn

To derive the alpha-beta algorithm, we denote the final hidden variable zN as
the root node, and first pass messages from the leaf node h to the root. From the
general results (8.66) and (8.69) for message propagation, we see that the messages
which are propagated in the hidden Markov model take the form

µzn−1→fn(zn−1) = µfn−1→zn−1(zn−1) (13.47)

µfn→zn(zn) =
∑
zn−1

fn(zn−1, zn)µzn−1→fn(zn−1) (13.48)

These equations represent the propagation of messages forward along the chain and
are equivalent to the alpha recursions derived in the previous section, as we shall
now show. Note that because the variable nodes zn have only two neighbours, they
perform no computation.

We can eliminate µzn−1→fn(zn−1) from (13.48) using (13.47) to give a recur-
sion for the f → z messages of the form

µfn→zn(zn) =
∑
zn−1

fn(zn−1, zn)µfn−1→zn−1(zn−1). (13.49)

If we now recall the definition (13.46), and if we define

α(zn) = µfn→zn(zn) (13.50)

then we obtain the alpha recursion given by (13.36). We also need to verify that
the quantities α(zn) are themselves equivalent to those defined previously. This
is easily done by using the initial condition (8.71) and noting that α(z1) is given
by h(z1) = p(z1)p(x1|z1) which is identical to (13.37). Because the initial α is
the same, and because they are iteratively computed using the same equation, all
subsequent α quantities must be the same.

Next we consider the messages that are propagated from the root node back to
the leaf node. These take the form

µfn+1→fn(zn) =
∑
zn+1

fn+1(zn, zn+1)µfn+2→fn+1(zn+1) (13.51)

where, as before, we have eliminated the messages of the type z → f since the
variable nodes perform no computation. Using the definition (13.46) to substitute
for fn+1(zn, zn+1), and defining

β(zn) = µfn+1→zn(zn) (13.52)
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we obtain the beta recursion given by (13.38). Again, we can verify that the beta
variables themselves are equivalent by noting that (8.70) implies that the initial mes-
sage send by the root variable node is µzN→fN

(zN ) = 1, which is identical to the
initialization of β(zN ) given in Section 13.2.2.

The sum-product algorithm also specifies how to evaluate the marginals once all
the messages have been evaluated. In particular, the result (8.63) shows that the local
marginal at the node zn is given by the product of the incoming messages. Because
we have conditioned on the variables X = {x1, . . . ,xN}, we are computing the
joint distribution

p(zn,X) = µfn→zn(zn)µfn+1→zn(zn) = α(zn)β(zn). (13.53)

Dividing both sides by p(X), we then obtain

γ(zn) =
p(zn,X)

p(X)
=

α(zn)β(zn)
p(X)

(13.54)

in agreement with (13.33). The result (13.43) can similarly be derived from (8.72).Exercise 13.11

13.2.4 Scaling factors
There is an important issue that must be addressed before we can make use of the

forward backward algorithm in practice. From the recursion relation (13.36), we note
that at each step the new value α(zn) is obtained from the previous value α(zn−1)
by multiplying by quantities p(zn|zn−1) and p(xn|zn). Because these probabilities
are often significantly less than unity, as we work our way forward along the chain,
the values of α(zn) can go to zero exponentially quickly. For moderate lengths of
chain (say 100 or so), the calculation of the α(zn) will soon exceed the dynamic
range of the computer, even if double precision floating point is used.

In the case of i.i.d. data, we implicitly circumvented this problem with the eval-
uation of likelihood functions by taking logarithms. Unfortunately, this will not help
here because we are forming sums of products of small numbers (we are in fact im-
plicitly summing over all possible paths through the lattice diagram of Figure 13.7).
We therefore work with re-scaled versions of α(zn) and β(zn) whose values remain
of order unity. As we shall see, the corresponding scaling factors cancel out when
we use these re-scaled quantities in the EM algorithm.

In (13.34), we defined α(zn) = p(x1, . . . ,xn, zn) representing the joint distri-
bution of all the observations up to xn and the latent variable zn. Now we define a
normalized version of α given by

α̂(zn) = p(zn|x1, . . . ,xn) =
α(zn)

p(x1, . . . ,xn)
(13.55)

which we expect to be well behaved numerically because it is a probability distribu-
tion over K variables for any value of n. In order to relate the scaled and original al-
pha variables, we introduce scaling factors defined by conditional distributions over
the observed variables

cn = p(xn|x1, . . . ,xn−1). (13.56)
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oil and water, and so for infinite integration time the data will locally live on a two-
dimensional manifold. For a finite integration time, the individual data points will be
perturbed away from the manifold by the photon noise. In the homogeneous phase
configuration, the path lengths in oil and water are linearly related to the fractions of
oil and water, and so the data points lie close to a linear manifold. For the annular
configuration, the relationship between phase fraction and path length is nonlinear
and so the manifold will be nonlinear. In the case of the laminar configuration the
situation is even more complex because small variations in the phase fractions can
cause one of the horizontal phase boundaries to move across one of the horizontal
beam lines leading to a discontinuous jump in the 12-dimensional observation space.
In this way, the two-dimensional nonlinear manifold for the laminar configuration is
broken into six distinct segments. Note also that some of the manifolds for different
phase configurations meet at specific points, for example if the pipe is filled entirely
with oil, it corresponds to specific instances of the laminar, annular, and homoge-
neous configurations.

Old Faithful

Old Faithful, shown in Figure A.4, is a hydrothermal geyser in Yellowstone National
Park in the state of Wyoming, U.S.A., and is a popular tourist attraction. Its name
stems from the supposed regularity of its eruptions.

The data set comprises 272 observations, each of which represents a single erup-
tion and contains two variables corresponding to the duration in minutes of the erup-
tion, and the time until the next eruption, also in minutes. Figure A.5 shows a plot of
the time to the next eruption versus the duration of the eruptions. It can be seen that
the time to the next eruption varies considerably, although knowledge of the duration
of the current eruption allows it to be predicted more accurately. Note that there exist
several other data sets relating to the eruptions of Old Faithful.

Figure A.4 The Old Faithful geyser
in Yellowstone National
Park. c©Bruce T. Gourley
www.brucegourley.com.
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Figure A.5 Plot of the time to the next eruption
in minutes (vertical axis) versus the
duration of the eruption in minutes
(horizontal axis) for the Old Faithful
data set.
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Synthetic Data

Throughout the book, we use two simple synthetic data sets to illustrate many of the
algorithms. The first of these is a regression problem, based on the sinusoidal func-
tion, shown in Figure A.6. The input values {xn} are generated uniformly in range
(0, 1), and the corresponding target values {tn} are obtained by first computing the
corresponding values of the function sin(2πx), and then adding random noise with
a Gaussian distribution having standard deviation 0.3. Various forms of this data set,
having different numbers of data points, are used in the book.

The second data set is a classification problem having two classes, with equal
prior probabilities, and is shown in Figure A.7. The blue class is generated from a
single Gaussian while the red class comes from a mixture of two Gaussians. Be-
cause we know the class priors and the class-conditional densities, it is straightfor-
ward to evaluate and plot the true posterior probabilities as well as the minimum
misclassification-rate decision boundary, as shown in Figure A.7.
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Figure A.6 The left-hand plot shows the synthetic regression data set along with the underlying sinusoidal
function from which the data points were generated. The right-hand plot shows the true conditional distribution
p(t|x) from which the labels are generated, in which the green curve denotes the mean, and the shaded region
spans one standard deviation on each side of the mean.
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Figure A.7 The left plot shows the synthetic classification data set with data from the two classes shown in
red and blue. On the right is a plot of the true posterior probabilities, shown on a colour scale going from pure
red denoting probability of the red class is 1 to pure blue denoting probability of the red class is 0. Because
these probabilities are known, the optimal decision boundary for minimizing the misclassification rate (which
corresponds to the contour along which the posterior probabilities for each class equal 0.5) can be evaluated
and is shown by the green curve. This decision boundary is also plotted on the left-hand figure.





Appendix B. Probability Distributions

In this appendix, we summarize the main properties of some of the most widely used
probability distributions, and for each distribution we list some key statistics such as
the expectation E[x], the variance (or covariance), the mode, and the entropy H[x].
All of these distributions are members of the exponential family and are widely used
as building blocks for more sophisticated probabilistic models.

Bernoulli

This is the distribution for a single binary variable x ∈ {0, 1} representing, for
example, the result of flipping a coin. It is governed by a single continuous parameter
µ ∈ [0, 1] that represents the probability of x = 1.

Bern(x|µ) = µx(1 − µ)1−x (B.1)

E[x] = µ (B.2)

var[x] = µ(1 − µ) (B.3)

mode[x] =
{

1 if µ � 0.5,
0 otherwise (B.4)

H[x] = −µ lnµ − (1 − µ) ln(1 − µ). (B.5)

The Bernoulli is a special case of the binomial distribution for the case of a single
observation. Its conjugate prior for µ is the beta distribution.

685
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Beta

This is a distribution over a continuous variable µ ∈ [0, 1], which is often used to
represent the probability for some binary event. It is governed by two parameters a
and b that are constrained by a > 0 and b > 0 to ensure that the distribution can be
normalized.

Beta(µ|a, b) =
Γ(a + b)
Γ(a)Γ(b)

µa−1(1 − µ)b−1 (B.6)

E[µ] =
a

a + b
(B.7)

var[µ] =
ab

(a + b)2(a + b + 1)
(B.8)

mode[µ] =
a − 1

a + b − 2
. (B.9)

The beta is the conjugate prior for the Bernoulli distribution, for which a and b can
be interpreted as the effective prior number of observations of x = 1 and x = 0,
respectively. Its density is finite if a � 1 and b � 1, otherwise there is a singularity
at µ = 0 and/or µ = 1. For a = b = 1, it reduces to a uniform distribution. The beta
distribution is a special case of the K-state Dirichlet distribution for K = 2.

Binomial

The binomial distribution gives the probability of observing m occurrences of x = 1
in a set of N samples from a Bernoulli distribution, where the probability of observ-
ing x = 1 is µ ∈ [0, 1].

Bin(m|N, µ) =
(

N

m

)
µm(1 − µ)N−m (B.10)

E[m] = Nµ (B.11)

var[m] = Nµ(1 − µ) (B.12)

mode[m] = �(N + 1)µ� (B.13)

where �(N + 1)µ� denotes the largest integer that is less than or equal to (N + 1)µ,
and the quantity (

N

m

)
=

N !
m!(N − m)!

(B.14)

denotes the number of ways of choosing m objects out of a total of N identical
objects. Here m!, pronounced ‘factorial m’, denotes the product m × (m − 1) ×
. . . ,×2 × 1. The particular case of the binomial distribution for N = 1 is known as
the Bernoulli distribution, and for large N the binomial distribution is approximately
Gaussian. The conjugate prior for µ is the beta distribution.
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Dirichlet

The Dirichlet is a multivariate distribution over K random variables 0 � µk � 1,
where k = 1, . . . , K, subject to the constraints

0 � µk � 1,

K∑
k=1

µk = 1. (B.15)

Denoting µ = (µ1, . . . , µK)T and α = (α1, . . . , αK)T, we have

Dir(µ|α) = C(α)
K∏

k=1

µαk−1
k (B.16)

E[µk] =
αk

α̂
(B.17)

var[µk] =
αk(α̂ − αk)
α̂2(α̂ + 1)

(B.18)

cov[µjµk] = − αjαk

α̂2(α̂ + 1)
(B.19)

mode[µk] =
αk − 1
α̂ − K

(B.20)

E[ln µk] = ψ(αk) − ψ(α̂) (B.21)

H[µ] = −
K∑

k=1

(αk − 1) {ψ(αk) − ψ(α̂)} − lnC(α) (B.22)

where

C(α) =
Γ(α̂)

Γ(α1) · · ·Γ(αK)
(B.23)

and

α̂ =
K∑

k=1

αk. (B.24)

Here

ψ(a) ≡ d

da
ln Γ(a) (B.25)

is known as the digamma function (Abramowitz and Stegun, 1965). The parameters
αk are subject to the constraint αk > 0 in order to ensure that the distribution can be
normalized.

The Dirichlet forms the conjugate prior for the multinomial distribution and rep-
resents a generalization of the beta distribution. In this case, the parameters αk can
be interpreted as effective numbers of observations of the corresponding values of
the K-dimensional binary observation vector x. As with the beta distribution, the
Dirichlet has finite density everywhere provided αk � 1 for all k.
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Gamma

The Gamma is a probability distribution over a positive random variable τ > 0
governed by parameters a and b that are subject to the constraints a > 0 and b > 0
to ensure that the distribution can be normalized.

Gam(τ |a, b) =
1

Γ(a)
baτa−1e−bτ (B.26)

E[τ ] =
a

b
(B.27)

var[τ ] =
a

b2
(B.28)

mode[τ ] =
a − 1

b
for α � 1 (B.29)

E[ln τ ] = ψ(a) − ln b (B.30)

H[τ ] = ln Γ(a) − (a − 1)ψ(a) − ln b + a (B.31)

where ψ(·) is the digamma function defined by (B.25). The gamma distribution is
the conjugate prior for the precision (inverse variance) of a univariate Gaussian. For
a � 1 the density is everywhere finite, and the special case of a = 1 is known as the
exponential distribution.

Gaussian

The Gaussian is the most widely used distribution for continuous variables. It is also
known as the normal distribution. In the case of a single variable x ∈ (−∞,∞) it is
governed by two parameters, the mean µ ∈ (−∞,∞) and the variance σ2 > 0.

N (x|µ, σ2) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(x − µ)2

}
(B.32)

E[x] = µ (B.33)

var[x] = σ2 (B.34)

mode[x] = µ (B.35)

H[x] =
1
2

ln σ2 +
1
2

(1 + ln(2π)) . (B.36)

The inverse of the variance τ = 1/σ2 is called the precision, and the square root
of the variance σ is called the standard deviation. The conjugate prior for µ is the
Gaussian, and the conjugate prior for τ is the gamma distribution. If both µ and τ
are unknown, their joint conjugate prior is the Gaussian-gamma distribution.

For a D-dimensional vector x, the Gaussian is governed by a D-dimensional
mean vector µ and a D × D covariance matrix Σ that must be symmetric and
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positive-definite.

N (x|µ,Σ) =
1

(2π)D/2

1
|Σ|1/2

exp
{
−1

2
(x − µ)TΣ−1(x − µ)

}
(B.37)

E[x] = µ (B.38)

cov[x] = Σ (B.39)

mode[x] = µ (B.40)

H[x] =
1
2

ln |Σ| + D

2
(1 + ln(2π)) . (B.41)

The inverse of the covariance matrix Λ = Σ−1 is the precision matrix, which is also
symmetric and positive definite. Averages of random variables tend to a Gaussian, by
the central limit theorem, and the sum of two Gaussian variables is again Gaussian.
The Gaussian is the distribution that maximizes the entropy for a given variance
(or covariance). Any linear transformation of a Gaussian random variable is again
Gaussian. The marginal distribution of a multivariate Gaussian with respect to a
subset of the variables is itself Gaussian, and similarly the conditional distribution is
also Gaussian. The conjugate prior for µ is the Gaussian, the conjugate prior for Λ
is the Wishart, and the conjugate prior for (µ,Λ) is the Gaussian-Wishart.

If we have a marginal Gaussian distribution for x and a conditional Gaussian
distribution for y given x in the form

p(x) = N (x|µ,Λ−1) (B.42)

p(y|x) = N (y|Ax + b,L−1) (B.43)

then the marginal distribution of y, and the conditional distribution of x given y, are
given by

p(y) = N (y|Aµ + b,L−1 + AΛ−1AT) (B.44)

p(x|y) = N (x|Σ{ATL(y − b) + Λµ},Σ) (B.45)

where
Σ = (Λ + ATLA)−1. (B.46)

If we have a joint Gaussian distribution N (x|µ,Σ) with Λ ≡ Σ−1 and we
define the following partitions

x =
(

xa

xb

)
, µ =

(
µa

µb

)
(B.47)

Σ =
(

Σaa Σab

Σba Σbb

)
, Λ =

(
Λaa Λab

Λba Λbb

)
(B.48)

then the conditional distribution p(xa|xb) is given by

p(xa|xb) = N (x|µa|b,Λ
−1
aa ) (B.49)

µa|b = µa − Λ−1
aa Λab(xb − µb) (B.50)
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and the marginal distribution p(xa) is given by

p(xa) = N (xa|µa,Σaa). (B.51)

Gaussian-Gamma

This is the conjugate prior distribution for a univariate Gaussian N (x|µ, λ−1) in
which the mean µ and the precision λ are both unknown and is also called the
normal-gamma distribution. It comprises the product of a Gaussian distribution for
µ, whose precision is proportional to λ, and a gamma distribution over λ.

p(µ, λ|µ0, β, a, b) = N (
µ|µo, (βλ)−1

)
Gam(λ|a, b). (B.52)

Gaussian-Wishart

This is the conjugate prior distribution for a multivariate Gaussian N (x|µ,Λ) in
which both the mean µ and the precision Λ are unknown, and is also called the
normal-Wishart distribution. It comprises the product of a Gaussian distribution for
µ, whose precision is proportional to Λ, and a Wishart distribution over Λ.

p(µ,Λ|µ0, β,W, ν) = N (
µ|µ0, (βΛ)−1

) W(Λ|W, ν). (B.53)

For the particular case of a scalar x, this is equivalent to the Gaussian-gamma distri-
bution.

Multinomial

If we generalize the Bernoulli distribution to an K-dimensional binary variable x
with components xk ∈ {0, 1} such that

∑
k xk = 1, then we obtain the following

discrete distribution

p(x) =
K∏

k=1

µxk

k (B.54)

E[xk] = µk (B.55)

var[xk] = µk(1 − µk) (B.56)

cov[xjxk] = Ijkµk (B.57)

H[x] = −
M∑

k=1

µk ln µk (B.58)
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where Ijk is the j, k element of the identity matrix. Because p(xk = 1) = µk, the
parameters must satisfy 0 � µk � 1 and

∑
k µk = 1.

The multinomial distribution is a multivariate generalization of the binomial and
gives the distribution over counts mk for a K-state discrete variable to be in state k
given a total number of observations N .

Mult(m1, m2, . . . , mK |µ, N) =
(

N

m1m2 . . . mM

) M∏
k=1

µmk

k (B.59)

E[mk] = Nµk (B.60)

var[mk] = Nµk(1 − µk) (B.61)

cov[mjmk] = −Nµjµk (B.62)

where µ = (µ1, . . . , µK)T, and the quantity(
N

m1m2 . . . mK

)
=

N !
m1! . . . mK !

(B.63)

gives the number of ways of taking N identical objects and assigning mk of them to
bin k for k = 1, . . . , K. The value of µk gives the probability of the random variable
taking state k, and so these parameters are subject to the constraints 0 � µk � 1
and

∑
k µk = 1. The conjugate prior distribution for the parameters {µk} is the

Dirichlet.

Normal

The normal distribution is simply another name for the Gaussian. In this book, we
use the term Gaussian throughout, although we retain the conventional use of the
symbol N to denote this distribution. For consistency, we shall refer to the normal-
gamma distribution as the Gaussian-gamma distribution, and similarly the normal-
Wishart is called the Gaussian-Wishart.

Student’s t

This distribution was published by William Gosset in 1908, but his employer, Gui-
ness Breweries, required him to publish under a pseudonym, so he chose ‘Student’.
In the univariate form, Student’s t-distribution is obtained by placing a conjugate
gamma prior over the precision of a univariate Gaussian distribution and then inte-
grating out the precision variable. It can therefore be viewed as an infinite mixture
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of Gaussians having the same mean but different variances.

St(x|µ, λ, ν) =
Γ(ν/2 + 1/2)

Γ(ν/2)

(
λ

πν

)1/2 [
1 +

λ(x − µ)2

ν

]−ν/2−1/2

(B.64)

E[x] = µ for ν > 1 (B.65)

var[x] =
1
λ

ν

ν − 2
for ν > 2 (B.66)

mode[x] = µ. (B.67)

Here ν > 0 is called the number of degrees of freedom of the distribution. The
particular case of ν = 1 is called the Cauchy distribution.

For a D-dimensional variable x, Student’s t-distribution corresponds to marginal-
izing the precision matrix of a multivariate Gaussian with respect to a conjugate
Wishart prior and takes the form

St(x|µ,Λ, ν) =
Γ(ν/2 + D/2)

Γ(ν/2)
|Λ|1/2

(νπ)D/2

[
1 +

∆2

ν

]−ν/2−D/2

(B.68)

E[x] = µ for ν > 1 (B.69)

cov[x] =
ν

ν − 2
Λ−1 for ν > 2 (B.70)

mode[x] = µ (B.71)

where ∆2 is the squared Mahalanobis distance defined by

∆2 = (x − µ)TΛ(x − µ). (B.72)

In the limit ν → ∞, the t-distribution reduces to a Gaussian with mean µ and pre-
cision Λ. Student’s t-distribution provides a generalization of the Gaussian whose
maximum likelihood parameter values are robust to outliers.

Uniform

This is a simple distribution for a continuous variable x defined over a finite interval
x ∈ [a, b] where b > a.

U(x|a, b) =
1

b − a
(B.73)

E[x] =
(b + a)

2
(B.74)

var[x] =
(b − a)2

12
(B.75)

H[x] = ln(b − a). (B.76)

If x has distribution U(x|0, 1), then a + (b − a)x will have distribution U(x|a, b).
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Von Mises

The von Mises distribution, also known as the circular normal or the circular Gaus-
sian, is a univariate Gaussian-like periodic distribution for a variable θ ∈ [0, 2π).

p(θ|θ0, m) =
1

2πI0(m)
exp {m cos(θ − θ0)} (B.77)

where I0(m) is the zeroth-order Bessel function of the first kind. The distribution
has period 2π so that p(θ + 2π) = p(θ) for all θ. Care must be taken in interpret-
ing this distribution because simple expectations will be dependent on the (arbitrary)
choice of origin for the variable θ. The parameter θ0 is analogous to the mean of a
univariate Gaussian, and the parameter m > 0, known as the concentration param-
eter, is analogous to the precision (inverse variance). For large m, the von Mises
distribution is approximately a Gaussian centred on θ0.

Wishart

The Wishart distribution is the conjugate prior for the precision matrix of a multi-
variate Gaussian.

W(Λ|W, ν) = B(W, ν)|Λ|(ν−D−1)/2 exp
(
−1

2
Tr(W−1Λ)

)
(B.78)

where

B(W, ν) ≡ |W|−ν/2

(
2νD/2 πD(D−1)/4

D∏
i=1

Γ
(

ν + 1 − i

2

))−1

(B.79)

E[Λ] = νW (B.80)

E [ln |Λ|] =
D∑

i=1

ψ

(
ν + 1 − i

2

)
+ D ln 2 + ln |W| (B.81)

H[Λ] = − lnB(W, ν) − (ν − D − 1)
2

E [ln |Λ|] +
νD

2
(B.82)

where W is a D × D symmetric, positive definite matrix, and ψ(·) is the digamma
function defined by (B.25). The parameter ν is called the number of degrees of
freedom of the distribution and is restricted to ν > D − 1 to ensure that the Gamma
function in the normalization factor is well-defined. In one dimension, the Wishart
reduces to the gamma distribution Gam(λ|a, b) given by (B.26) with parameters
a = ν/2 and b = 1/2W .





Appendix C. Properties of Matrices

In this appendix, we gather together some useful properties and identities involving
matrices and determinants. This is not intended to be an introductory tutorial, and
it is assumed that the reader is already familiar with basic linear algebra. For some
results, we indicate how to prove them, whereas in more complex cases we leave
the interested reader to refer to standard textbooks on the subject. In all cases, we
assume that inverses exist and that matrix dimensions are such that the formulae
are correctly defined. A comprehensive discussion of linear algebra can be found in
Golub and Van Loan (1996), and an extensive collection of matrix properties is given
by Lütkepohl (1996). Matrix derivatives are discussed in Magnus and Neudecker
(1999).

Basic Matrix Identities

A matrix A has elements Aij where i indexes the rows, and j indexes the columns.
We use IN to denote the N × N identity matrix (also called the unit matrix), and
where there is no ambiguity over dimensionality we simply use I. The transpose
matrix AT has elements (AT)ij = Aji. From the definition of transpose, we have

(AB)T = BTAT (C.1)

which can be verified by writing out the indices. The inverse of A, denoted A−1,
satisfies

AA−1 = A−1A = I. (C.2)

Because ABB−1A−1 = I, we have

(AB)−1 = B−1A−1. (C.3)

Also we have (
AT

)−1
=
(
A−1

)T
(C.4)
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which is easily proven by taking the transpose of (C.2) and applying (C.1).
A useful identity involving matrix inverses is the following

(P−1 + BTR−1B)−1BTR−1 = PBT(BPBT + R)−1. (C.5)

which is easily verified by right multiplying both sides by (BPBT + R). Suppose
that P has dimensionality N ×N while R has dimensionality M ×M , so that B is
M ×N . Then if M � N , it will be much cheaper to evaluate the right-hand side of
(C.5) than the left-hand side. A special case that sometimes arises is

(I + AB)−1A = A(I + BA)−1. (C.6)

Another useful identity involving inverses is the following:

(A + BD−1C)−1 = A−1 − A−1B(D + CA−1B)−1CA−1 (C.7)

which is known as the Woodbury identity and which can be verified by multiplying
both sides by (A + BD−1C). This is useful, for instance, when A is large and
diagonal, and hence easy to invert, while B has many rows but few columns (and
conversely for C) so that the right-hand side is much cheaper to evaluate than the
left-hand side.

A set of vectors {a1, . . . ,aN} is said to be linearly independent if the relation∑
n αnan = 0 holds only if all αn = 0. This implies that none of the vectors

can be expressed as a linear combination of the remainder. The rank of a matrix is
the maximum number of linearly independent rows (or equivalently the maximum
number of linearly independent columns).

Traces and Determinants

Trace and determinant apply to square matrices. The trace Tr(A) of a matrix A
is defined as the sum of the elements on the leading diagonal. By writing out the
indices, we see that

Tr(AB) = Tr(BA). (C.8)

By applying this formula multiple times to the product of three matrices, we see that

Tr(ABC) = Tr(CAB) = Tr(BCA) (C.9)

which is known as the cyclic property of the trace operator and which clearly extends
to the product of any number of matrices. The determinant |A| of an N × N matrix
A is defined by

|A| =
∑

(±1)A1i1A2i2 · · ·ANiN
(C.10)

in which the sum is taken over all products consisting of precisely one element from
each row and one element from each column, with a coefficient +1 or −1 according
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to whether the permutation i1i2 . . . iN is even or odd, respectively. Note that |I| = 1.
Thus, for a 2 × 2 matrix, the determinant takes the form

|A| =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11a22 − a12a21. (C.11)

The determinant of a product of two matrices is given by

|AB| = |A||B| (C.12)

as can be shown from (C.10). Also, the determinant of an inverse matrix is given by∣∣A−1
∣∣ =

1
|A| (C.13)

which can be shown by taking the determinant of (C.2) and applying (C.12).
If A and B are matrices of size N × M , then∣∣IN + ABT

∣∣ =
∣∣IM + ATB

∣∣ . (C.14)

A useful special case is ∣∣IN + abT
∣∣ = 1 + aTb (C.15)

where a and b are N -dimensional column vectors.

Matrix Derivatives

Sometimes we need to consider derivatives of vectors and matrices with respect to
scalars. The derivative of a vector a with respect to a scalar x is itself a vector whose
components are given by (

∂a
∂x

)
i

=
∂ai

∂x
(C.16)

with an analogous definition for the derivative of a matrix. Derivatives with respect
to vectors and matrices can also be defined, for instance(

∂x

∂a

)
i

=
∂x

∂ai
(C.17)

and similarly (
∂a
∂b

)
ij

=
∂ai

∂bj
. (C.18)

The following is easily proven by writing out the components

∂

∂x

(
xTa

)
=

∂

∂x

(
aTx

)
= a. (C.19)
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Similarly
∂

∂x
(AB) =

∂A
∂x

B + A
∂B
∂x

. (C.20)

The derivative of the inverse of a matrix can be expressed as

∂

∂x

(
A−1

)
= −A−1 ∂A

∂x
A−1 (C.21)

as can be shown by differentiating the equation A−1A = I using (C.20) and then
right multiplying by A−1. Also

∂

∂x
ln |A| = Tr

(
A−1 ∂A

∂x

)
(C.22)

which we shall prove later. If we choose x to be one of the elements of A, we have

∂

∂Aij
Tr (AB) = Bji (C.23)

as can be seen by writing out the matrices using index notation. We can write this
result more compactly in the form

∂

∂A
Tr (AB) = BT. (C.24)

With this notation, we have the following properties

∂

∂A
Tr
(
ATB

)
= B (C.25)

∂

∂A
Tr(A) = I (C.26)

∂

∂A
Tr(ABAT) = A(B + BT) (C.27)

which can again be proven by writing out the matrix indices. We also have

∂

∂A
ln |A| =

(
A−1

)T
(C.28)

which follows from (C.22) and (C.26).

Eigenvector Equation

For a square matrix A of size M × M , the eigenvector equation is defined by

Aui = λiui (C.29)
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for i = 1, . . . , M , where ui is an eigenvector and λi is the corresponding eigenvalue.
This can be viewed as a set of M simultaneous homogeneous linear equations, and
the condition for a solution is that

|A − λiI| = 0 (C.30)

which is known as the characteristic equation. Because this is a polynomial of order
M in λi, it must have M solutions (though these need not all be distinct). The rank
of A is equal to the number of nonzero eigenvalues.

Of particular interest are symmetric matrices, which arise as covariance ma-
trices, kernel matrices, and Hessians. Symmetric matrices have the property that
Aij = Aji, or equivalently AT = A. The inverse of a symmetric matrix is also sym-
metric, as can be seen by taking the transpose of A−1A = I and using AA−1 = I
together with the symmetry of I.

In general, the eigenvalues of a matrix are complex numbers, but for symmetric
matrices the eigenvalues λi are real. This can be seen by first left multiplying (C.29)
by (u�

i )
T, where � denotes the complex conjugate, to give

(u�
i )

T Aui = λi (u�
i )

T ui. (C.31)

Next we take the complex conjugate of (C.29) and left multiply by uT
i to give

uT
i Au�

i = λ�
i u

T
i u�

i . (C.32)

where we have used A� = A because we consider only real matrices A. Taking
the transpose of the second of these equations, and using AT = A, we see that the
left-hand sides of the two equations are equal, and hence that λ�

i = λi and so λi

must be real.
The eigenvectors ui of a real symmetric matrix can be chosen to be orthonormal

(i.e., orthogonal and of unit length) so that

uT
i uj = Iij (C.33)

where Iij are the elements of the identity matrix I. To show this, we first left multiply
(C.29) by uT

j to give
uT

j Aui = λiuT
j ui (C.34)

and hence, by exchange of indices, we have

uT
i Auj = λjuT

i uj . (C.35)

We now take the transpose of the second equation and make use of the symmetry
property AT = A, and then subtract the two equations to give

(λi − λj)uT
i uj = 0. (C.36)

Hence, for λi �= λj , we have uT
i uj = 0, and hence ui and uj are orthogonal. If the

two eigenvalues are equal, then any linear combination αui + βuj is also an eigen-
vector with the same eigenvalue, so we can select one linear combination arbitrarily,
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and then choose the second to be orthogonal to the first (it can be shown that the de-
generate eigenvectors are never linearly dependent). Hence the eigenvectors can be
chosen to be orthogonal, and by normalizing can be set to unit length. Because there
are M eigenvalues, the corresponding M orthogonal eigenvectors form a complete
set and so any M -dimensional vector can be expressed as a linear combination of
the eigenvectors.

We can take the eigenvectors ui to be the columns of an M × M matrix U,
which from orthonormality satisfies

UTU = I. (C.37)

Such a matrix is said to be orthogonal. Interestingly, the rows of this matrix are also
orthogonal, so that UUT = I. To show this, note that (C.37) implies UTUU−1 =
U−1 = UT and so UU−1 = UUT = I. Using (C.12), it also follows that |U| = 1.

The eigenvector equation (C.29) can be expressed in terms of U in the form

AU = UΛ (C.38)

where Λ is an M × M diagonal matrix whose diagonal elements are given by the
eigenvalues λi.

If we consider a column vector x that is transformed by an orthogonal matrix U
to give a new vector

x̃ = Ux (C.39)

then the length of the vector is preserved because

x̃Tx̃ = xTUTUx = xTx (C.40)

and similarly the angle between any two such vectors is preserved because

x̃Tỹ = xTUTUy = xTy. (C.41)

Thus, multiplication by U can be interpreted as a rigid rotation of the coordinate
system.

From (C.38), it follows that

UTAU = Λ (C.42)

and because Λ is a diagonal matrix, we say that the matrix A is diagonalized by the
matrix U. If we left multiply by U and right multiply by UT, we obtain

A = UΛUT (C.43)

Taking the inverse of this equation, and using (C.3) together with U−1 = UT, we
have

A−1 = UΛ−1UT. (C.44)
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These last two equations can also be written in the form

A =
M∑
i=1

λiuiuT
i (C.45)

A−1 =
M∑
i=1

1
λi

uiuT
i . (C.46)

If we take the determinant of (C.43), and use (C.12), we obtain

|A| =
M∏
i=1

λi. (C.47)

Similarly, taking the trace of (C.43), and using the cyclic property (C.8) of the trace
operator together with UTU = I, we have

Tr(A) =
M∑
i=1

λi. (C.48)

We leave it as an exercise for the reader to verify (C.22) by making use of the results
(C.33), (C.45), (C.46), and (C.47).

A matrix A is said to be positive definite, denoted by A � 0, if wTAw > 0 for
all values of the vector w. Equivalently, a positive definite matrix has λi > 0 for all
of its eigenvalues (as can be seen by setting w to each of the eigenvectors in turn,
and by noting that an arbitrary vector can be expanded as a linear combination of the
eigenvectors). Note that positive definite is not the same as all the elements being
positive. For example, the matrix (

1 2
3 4

)
(C.49)

has eigenvalues λ1 � 5.37 and λ2 � −0.37. A matrix is said to be positive semidef-
inite if wTAw � 0 holds for all values of w, which is denoted A 	 0, and is
equivalent to λi � 0.





Appendix D. Calculus of Variations

We can think of a function y(x) as being an operator that, for any input value x,
returns an output value y. In the same way, we can define a functional F [y] to be
an operator that takes a function y(x) and returns an output value F . An example of
a functional is the length of a curve drawn in a two-dimensional plane in which the
path of the curve is defined in terms of a function. In the context of machine learning,
a widely used functional is the entropy H[x] for a continuous variable x because, for
any choice of probability density function p(x), it returns a scalar value representing
the entropy of x under that density. Thus the entropy of p(x) could equally well have
been written as H[p].

A common problem in conventional calculus is to find a value of x that max-
imizes (or minimizes) a function y(x). Similarly, in the calculus of variations we
seek a function y(x) that maximizes (or minimizes) a functional F [y]. That is, of all
possible functions y(x), we wish to find the particular function for which the func-
tional F [y] is a maximum (or minimum). The calculus of variations can be used, for
instance, to show that the shortest path between two points is a straight line or that
the maximum entropy distribution is a Gaussian.

If we weren’t familiar with the rules of ordinary calculus, we could evaluate a
conventional derivative dy/ dx by making a small change ε to the variable x and
then expanding in powers of ε, so that

y(x + ε) = y(x) +
dy

dx
ε + O(ε2) (D.1)

and finally taking the limit ε → 0. Similarly, for a function of several variables
y(x1, . . . , xD), the corresponding partial derivatives are defined by

y(x1 + ε1, . . . , xD + εD) = y(x1, . . . , xD) +
D∑

i=1

∂y

∂xi
εi + O(ε2). (D.2)

The analogous definition of a functional derivative arises when we consider how
much a functional F [y] changes when we make a small change εη(x) to the function

703
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Figure D.1 A functional derivative can be defined by
considering how the value of a functional
F [y] changes when the function y(x) is
changed to y(x) + εη(x) where η(x) is an
arbitrary function of x.

y(x)

y(x) + εη(x)

x

y(x), where η(x) is an arbitrary function of x, as illustrated in Figure D.1. We denote
the functional derivative of E[f ] with respect to f(x) by δF/δf(x), and define it by
the following relation:

F [y(x) + εη(x)] = F [y(x)] + ε

∫
δF

δy(x)
η(x) dx + O(ε2). (D.3)

This can be seen as a natural extension of (D.2) in which F [y] now depends on a
continuous set of variables, namely the values of y at all points x. Requiring that the
functional be stationary with respect to small variations in the function y(x) gives∫

δE

δy(x)
η(x) dx = 0. (D.4)

Because this must hold for an arbitrary choice of η(x), it follows that the functional
derivative must vanish. To see this, imagine choosing a perturbation η(x) that is zero
everywhere except in the neighbourhood of a point x̂, in which case the functional
derivative must be zero at x = x̂. However, because this must be true for every
choice of x̂, the functional derivative must vanish for all values of x.

Consider a functional that is defined by an integral over a function G(y, y′, x)
that depends on both y(x) and its derivative y′(x) as well as having a direct depen-
dence on x

F [y] =
∫

G (y(x), y′(x), x) dx (D.5)

where the value of y(x) is assumed to be fixed at the boundary of the region of
integration (which might be at infinity). If we now consider variations in the function
y(x), we obtain

F [y(x) + εη(x)] = F [y(x)] + ε

∫ {
∂G

∂y
η(x) +

∂G

∂y′ η
′(x)

}
dx + O(ε2). (D.6)

We now have to cast this in the form (D.3). To do so, we integrate the second term by
parts and make use of the fact that η(x) must vanish at the boundary of the integral
(because y(x) is fixed at the boundary). This gives

F [y(x) + εη(x)] = F [y(x)] + ε

∫ {
∂G

∂y
− d

dx

(
∂G

∂y′

)}
η(x) dx + O(ε2) (D.7)
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from which we can read off the functional derivative by comparison with (D.3).
Requiring that the functional derivative vanishes then gives

∂G

∂y
− d

dx

(
∂G

∂y′

)
= 0 (D.8)

which are known as the Euler-Lagrange equations. For example, if

G = y(x)2 + (y′(x))2 (D.9)

then the Euler-Lagrange equations take the form

y(x) − d2y

dx2
= 0. (D.10)

This second order differential equation can be solved for y(x) by making use of the
boundary conditions on y(x).

Often, we consider functionals defined by integrals whose integrands take the
form G(y, x) and that do not depend on the derivatives of y(x). In this case, station-
arity simply requires that ∂G/∂y(x) = 0 for all values of x.

If we are optimizing a functional with respect to a probability distribution, then
we need to maintain the normalization constraint on the probabilities. This is often
most conveniently done using a Lagrange multiplier, which then allows an uncon-Appendix E
strained optimization to be performed.

The extension of the above results to a multidimensional variable x is straight-
forward. For a more comprehensive discussion of the calculus of variations, see
Sagan (1969).





Appendix E. Lagrange Multipliers

Lagrange multipliers, also sometimes called undetermined multipliers, are used to
find the stationary points of a function of several variables subject to one or more
constraints.

Consider the problem of finding the maximum of a function f(x1, x2) subject to
a constraint relating x1 and x2, which we write in the form

g(x1, x2) = 0. (E.1)

One approach would be to solve the constraint equation (E.1) and thus express x2 as
a function of x1 in the form x2 = h(x1). This can then be substituted into f(x1, x2)
to give a function of x1 alone of the form f(x1, h(x1)). The maximum with respect
to x1 could then be found by differentiation in the usual way, to give the stationary
value x�

1 , with the corresponding value of x2 given by x�
2 = h(x�

1).
One problem with this approach is that it may be difficult to find an analytic

solution of the constraint equation that allows x2 to be expressed as an explicit func-
tion of x1. Also, this approach treats x1 and x2 differently and so spoils the natural
symmetry between these variables.

A more elegant, and often simpler, approach is based on the introduction of a
parameter λ called a Lagrange multiplier. We shall motivate this technique from
a geometrical perspective. Consider a D-dimensional variable x with components
x1, . . . , xD. The constraint equation g(x) = 0 then represents a (D−1)-dimensional
surface in x-space as indicated in Figure E.1.

We first note that at any point on the constraint surface the gradient ∇g(x) of
the constraint function will be orthogonal to the surface. To see this, consider a point
x that lies on the constraint surface, and consider a nearby point x + ε that also lies
on the surface. If we make a Taylor expansion around x, we have

g(x + ε) � g(x) + εT∇g(x). (E.2)

Because both x and x+ε lie on the constraint surface, we have g(x) = g(x+ε) and
hence εT∇g(x) � 0. In the limit ‖ε‖ → 0 we have εT∇g(x) = 0, and because ε is

707



708 E. LAGRANGE MULTIPLIERS

Figure E.1 A geometrical picture of the technique of La-
grange multipliers in which we seek to maximize a
function f(x), subject to the constraint g(x) = 0.
If x is D dimensional, the constraint g(x) = 0 cor-
responds to a subspace of dimensionality D − 1,
indicated by the red curve. The problem can
be solved by optimizing the Lagrangian function
L(x, λ) = f(x) + λg(x).

∇f(x)

∇g(x)

xA

g(x) = 0

then parallel to the constraint surface g(x) = 0, we see that the vector ∇g is normal
to the surface.

Next we seek a point x� on the constraint surface such that f(x) is maximized.
Such a point must have the property that the vector ∇f(x) is also orthogonal to the
constraint surface, as illustrated in Figure E.1, because otherwise we could increase
the value of f(x) by moving a short distance along the constraint surface. Thus ∇f
and ∇g are parallel (or anti-parallel) vectors, and so there must exist a parameter λ
such that

∇f + λ∇g = 0 (E.3)

where λ �= 0 is known as a Lagrange multiplier. Note that λ can have either sign.
At this point, it is convenient to introduce the Lagrangian function defined by

L(x, λ) ≡ f(x) + λg(x). (E.4)

The constrained stationarity condition (E.3) is obtained by setting ∇xL = 0. Fur-
thermore, the condition ∂L/∂λ = 0 leads to the constraint equation g(x) = 0.

Thus to find the maximum of a function f(x) subject to the constraint g(x) = 0,
we define the Lagrangian function given by (E.4) and we then find the stationary
point of L(x, λ) with respect to both x and λ. For a D-dimensional vector x, this
gives D +1 equations that determine both the stationary point x� and the value of λ.
If we are only interested in x�, then we can eliminate λ from the stationarity equa-
tions without needing to find its value (hence the term ‘undetermined multiplier’).

As a simple example, suppose we wish to find the stationary point of the function
f(x1, x2) = 1 − x2

1 − x2
2 subject to the constraint g(x1, x2) = x1 + x2 − 1 = 0, as

illustrated in Figure E.2. The corresponding Lagrangian function is given by

L(x, λ) = 1 − x2
1 − x2

2 + λ(x1 + x2 − 1). (E.5)

The conditions for this Lagrangian to be stationary with respect to x1, x2, and λ give
the following coupled equations:

−2x1 + λ = 0 (E.6)

−2x2 + λ = 0 (E.7)

x1 + x2 − 1 = 0. (E.8)
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Figure E.2 A simple example of the use of Lagrange multipli-
ers in which the aim is to maximize f(x1, x2) =
1 − x2

1 − x2
2 subject to the constraint g(x1, x2) = 0

where g(x1, x2) = x1 + x2 − 1. The circles show
contours of the function f(x1, x2), and the diagonal
line shows the constraint surface g(x1, x2) = 0.

g(x1, x2) = 0

x1

x2

(x�
1, x

�
2)

Solution of these equations then gives the stationary point as (x�
1, x

�
2) = (1

2
, 1

2
), and

the corresponding value for the Lagrange multiplier is λ = 1.
So far, we have considered the problem of maximizing a function subject to an

equality constraint of the form g(x) = 0. We now consider the problem of maxi-
mizing f(x) subject to an inequality constraint of the form g(x) � 0, as illustrated
in Figure E.3.

There are now two kinds of solution possible, according to whether the con-
strained stationary point lies in the region where g(x) > 0, in which case the con-
straint is inactive, or whether it lies on the boundary g(x) = 0, in which case the
constraint is said to be active. In the former case, the function g(x) plays no role
and so the stationary condition is simply ∇f(x) = 0. This again corresponds to
a stationary point of the Lagrange function (E.4) but this time with λ = 0. The
latter case, where the solution lies on the boundary, is analogous to the equality con-
straint discussed previously and corresponds to a stationary point of the Lagrange
function (E.4) with λ �= 0. Now, however, the sign of the Lagrange multiplier is
crucial, because the function f(x) will only be at a maximum if its gradient is ori-
ented away from the region g(x) > 0, as illustrated in Figure E.3. We therefore have
∇f(x) = −λ∇g(x) for some value of λ > 0.

For either of these two cases, the product λg(x) = 0. Thus the solution to the

Figure E.3 Illustration of the problem of maximizing
f(x) subject to the inequality constraint
g(x) � 0.

∇f(x)

∇g(x)

xA

xB

g(x) = 0
g(x) > 0
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problem of maximizing f(x) subject to g(x) � 0 is obtained by optimizing the
Lagrange function (E.4) with respect to x and λ subject to the conditions

g(x) � 0 (E.9)

λ � 0 (E.10)

λg(x) = 0 (E.11)

These are known as the Karush-Kuhn-Tucker (KKT) conditions (Karush, 1939; Kuhn
and Tucker, 1951).

Note that if we wish to minimize (rather than maximize) the function f(x) sub-
ject to an inequality constraint g(x) � 0, then we minimize the Lagrangian function
L(x, λ) = f(x) − λg(x) with respect to x, again subject to λ � 0.

Finally, it is straightforward to extend the technique of Lagrange multipliers to
the case of multiple equality and inequality constraints. Suppose we wish to maxi-
mize f(x) subject to gj(x) = 0 for j = 1, . . . , J , and hk(x) � 0 for k = 1, . . . , K.
We then introduce Lagrange multipliers {λj} and {µk}, and then optimize the La-
grangian function given by

L(x, {λj}, {µk}) = f(x) +
J∑

j=1

λjgj(x) +
K∑

k=1

µkhk(x) (E.12)

subject to µk � 0 and µkhk(x) = 0 for k = 1, . . . , K. Extensions to constrained
functional derivatives are similarly straightforward. For a more detailed discussionAppendix D
of the technique of Lagrange multipliers, see Nocedal and Wright (1999).
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1-of-K coding scheme, 424

acceptance criterion, 538, 541, 544
activation function, 180, 213, 227
active constraint, 328, 709
AdaBoost, 657, 658
adaline, 196
adaptive rejection sampling, 530
ADF, see assumed density filtering
AIC, see Akaike information criterion
Akaike information criterion, 33, 217
α family of divergences, 469
α recursion, 620
ancestral sampling, 365, 525, 613
annular flow, 679
AR model, see autoregressive model
arc, 360
ARD, see automatic relevance determination
ARMA, see autoregressive moving average
assumed density filtering, 510
autoassociative networks, 592
automatic relevance determination, 259, 312, 349,

485, 582
autoregressive hidden Markov model, 632
autoregressive model, 609
autoregressive moving average, 304

back-tracking, 415, 630

backgammon, 3
backpropagation, 241
bagging, 656
basis function, 138, 172, 204, 227
batch training, 240
Baum-Welch algorithm, 618
Bayes’ theorem, 15
Bayes, Thomas, 21
Bayesian analysis, vii, 9, 21

hierarchical, 372
model averaging, 654

Bayesian information criterion, 33, 216
Bayesian model comparison, 161, 473, 483
Bayesian network, 360
Bayesian probability, 21
belief propagation, 403
Bernoulli distribution, 69, 113, 685

mixture model, 444
Bernoulli, Jacob, 69
beta distribution, 71, 686
beta recursion, 621
between-class covariance, 189
bias, 27, 149
bias parameter, 138, 181, 227, 346
bias-variance trade-off, 147
BIC, see Bayesian information criterion
binary entropy, 495
binomial distribution, 70, 686
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biological sequence, 610
bipartite graph, 401
bits, 49
blind source separation, 591
blocked path, 374, 378, 384
Boltzmann distribution, 387
Boltzmann, Ludwig Eduard, 53
Boolean logic, 21
boosting, 657
bootstrap, 23, 656
bootstrap filter, 646
box constraints, 333, 342
Box-Muller method, 527

C4.5, 663
calculus of variations, 462
canonical correlation analysis, 565
canonical link function, 212
CART, see classification and regression trees
Cauchy distribution, 527, 529, 692
causality, 366
CCA, see canonical correlation analysis
central differences, 246
central limit theorem, 78
chain graph, 393
chaining, 555
Chapman-Kolmogorov equations, 397
child node, 361
Cholesky decomposition, 528
chunking, 335
circular normal, see von Mises distribution
classical probability, 21
classification, 3
classification and regression trees, 663
clique, 385
clustering, 3
clutter problem, 511
co-parents, 383, 492
code-book vectors, 429
combining models, 45, 653
committee, 655
complete data set, 440
completing the square, 86
computational learning theory, 326, 344
concave function, 56

concentration parameter, 108, 693
condensation algorithm, 646
conditional entropy, 55
conditional expectation, 20
conditional independence, 46, 372, 383
conditional mixture model, see mixture model
conditional probability, 14
conjugate prior, 68, 98, 117, 490
convex duality, 494
convex function, 55, 493
convolutional neural network, 267
correlation matrix, 567
cost function, 41
covariance, 20

between-class, 189
within-class, 189

covariance matrix
diagonal, 84
isotropic, 84
partitioned, 85, 307
positive definite, 308

Cox’s axioms, 21
credit assignment, 3
cross-entropy error function, 206, 209, 235, 631,

666
cross-validation, 32, 161
cumulative distribution function, 18
curse of dimensionality, 33, 36
curve fitting, 4

D map, see dependency map
d-separation, 373, 378, 443
DAG, see directed acyclic graph
DAGSVM, 339
data augmentation, 537
data compression, 429
decision boundary, 39, 179
decision region, 39, 179
decision surface, see decision boundary
decision theory, 38
decision tree, 654, 663, 673
decomposition methods, 335
degrees of freedom, 559
degrees-of-freedom parameter, 102, 693
density estimation, 3, 67
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density network, 597
dependency map, 392
descendant node, 376
design matrix, 142, 347
differential entropy, 53
digamma function, 687
directed acyclic graph, 362
directed cycle, 362
directed factorization, 381
Dirichlet distribution, 76, 687
Dirichlet, Lejeune, 77
discriminant function, 43, 180, 181
discriminative model, 43, 203
distortion measure, 424
distributive law of multiplication, 396
DNA, 610
document retrieval, 299
dual representation, 293, 329
dual-energy gamma densitometry, 678
dynamic programming, 411
dynamical system, 548

E step, see expectation step
early stopping, 259
ECM, see expectation conditional maximization
edge, 360
effective number of observations, 72, 101
effective number of parameters, 9, 170, 281
elliptical K-means, 444
EM, see expectation maximization
emission probability, 611
empirical Bayes, see evidence approximation
energy function, 387
entropy, 49

conditional, 55
differential, 53
relative, 55

EP, see expectation propagation
ε-tube, 341
ε-insensitive error function, 340
equality constraint, 709
equivalent kernel, 159, 301
erf function, 211
error backpropagation, see backpropagation
error function, 5, 23

error-correcting output codes, 339
Euler, Leonhard, 465
Euler-Lagrange equations, 705
evidence approximation, 165, 347, 581
evidence function, 161
expectation, 19
expectation conditional maximization, 454
expectation maximization, 113, 423, 440

Gaussian mixture, 435
generalized, 454
sampling methods, 536

expectation propagation, 315, 468, 505
expectation step, 437
explaining away, 378
exploitation, 3
exploration, 3
exponential distribution, 526, 688
exponential family, 68, 113, 202, 490
extensive variables, 490

face detection, 2
face tracking, 355
factor analysis, 583

mixture model, 595
factor graph, 360, 399, 625
factor loading, 584
factorial hidden Markov model, 633
factorized distribution, 464, 476
feature extraction, 2
feature map, 268
feature space, 292, 586
Fisher information matrix, 298
Fisher kernel, 298
Fisher’s linear discriminant, 186
flooding schedule, 417
forward kinematics, 272
forward problem, 272
forward propagation, 228, 243
forward-backward algorithm, 618
fractional belief propagation, 517
frequentist probability, 21
fuel system, 376
function interpolation, 299
functional, 462, 703

derivative, 463
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gamma densitometry, 678
gamma distribution, 529, 688
gamma function, 71
gating function, 672
Gauss, Carl Friedrich, 79
Gaussian, 24, 78, 688

conditional, 85, 93
marginal, 88, 93
maximum likelihood, 93
mixture, 110, 270, 273, 430
sequential estimation, 94
sufficient statistics, 93
wrapped, 110

Gaussian kernel, 296
Gaussian process, 160, 303
Gaussian random field, 305
Gaussian-gamma distribution, 101, 690
Gaussian-Wishart distribution, 102, 475, 478, 690
GEM, see expectation maximization, generalized
generalization, 2
generalized linear model, 180, 213
generalized maximum likelihood, see evidence ap-

proximation
generative model, 43, 196, 297, 365, 572, 631
generative topographic mapping, 597

directional curvature, 599
magnification factor, 599

geodesic distance, 596
Gibbs sampling, 542

blocking, 546
Gibbs, Josiah Willard, 543
Gini index, 666
global minimum, 237
gradient descent, 240
Gram matrix, 293
graph-cut algorithm, 390
graphical model, 359

bipartite, 401
directed, 360
factorization, 362, 384
fully connected, 361
inference, 393
tree, 398
treewidth, 417
triangulated, 416

undirected, 360
Green’s function, 299
GTM, see generative topographic mapping

Hamilton, William Rowan, 549
Hamiltonian dynamics, 548
Hamiltonian function, 549
Hammersley-Clifford theorem, 387
handwriting recognition, 1, 610, 614
handwritten digit, 565, 614, 677
head-to-head path, 376
head-to-tail path, 375
Heaviside step function, 206
Hellinger distance, 470
Hessian matrix, 167, 215, 217, 238, 249

diagonal approximation, 250
exact evaluation, 253
fast multiplication, 254
finite differences, 252
inverse, 252
outer product approximation, 251

heteroscedastic, 273, 311
hidden Markov model, 297, 610

autoregressive, 632
factorial, 633
forward-backward algorithm, 618
input-output, 633
left-to-right, 613
maximum likelihood, 615
scaling factor, 627
sum-product algorithm, 625
switching, 644
variational inference, 625

hidden unit, 227
hidden variable, 84, 364, 430, 559
hierarchical Bayesian model, 372
hierarchical mixture of experts, 673
hinge error function, 337
Hinton diagram, 584
histogram density estimation, 120
HME, see hierarchical mixture of experts
hold-out set, 11
homogeneous flow, 679
homogeneous kernel, 292
homogeneous Markov chain, 540, 608



INDEX 733

Hooke’s law, 580
hybrid Monte Carlo, 548
hyperparameter, 71, 280, 311, 346, 372, 502
hyperprior, 372

I map, see independence map
i.i.d., see independent identically distributed
ICA, see independent component analysis
ICM, see iterated conditional modes
ID3, 663
identifiability, 435
image de-noising, 387
importance sampling, 525, 532
importance weights, 533
improper prior, 118, 259, 472
imputation step, 537
imputation-posterior algorithm, 537
inactive constraint, 328, 709
incomplete data set, 440
independence map, 392
independent component analysis, 591
independent factor analysis, 592
independent identically distributed, 26, 379
independent variables, 17
independent, identically distributed, 605
induced factorization, 485
inequality constraint, 709
inference, 38, 42
information criterion, 33
information geometry, 298
information theory, 48
input-output hidden Markov model, 633
intensive variables, 490
intrinsic dimensionality, 559
invariance, 261
inverse gamma distribution, 101
inverse kinematics, 272
inverse problem, 272
inverse Wishart distribution, 102
IP algorithm, see imputation-posterior algorithm
IRLS, see iterative reweighted least squares
Ising model, 389
isomap, 596
isometric feature map, 596
iterated conditional modes, 389, 415

iterative reweighted least squares, 207, 210, 316,
354, 672

Jacobian matrix, 247, 264
Jensen’s inequality, 56
join tree, 416
junction tree algorithm, 392, 416

K nearest neighbours, 125
K-means clustering algorithm, 424, 443
K-medoids algorithm, 428
Kalman filter, 304, 637

extended, 644
Kalman gain matrix, 639
Kalman smoother, 637
Karhunen-Loève transform, 561
Karush-Kuhn-Tucker conditions, 330, 333, 342,

710
kernel density estimator, 122, 326
kernel function, 123, 292, 294

Fisher, 298
Gaussian, 296
homogeneous, 292
nonvectorial inputs, 297
stationary, 292

kernel PCA, 586
kernel regression, 300, 302
kernel substitution, 292
kernel trick, 292
kinetic energy, 549
KKT, see Karush-Kuhn-Tucker conditions
KL divergence, see Kullback-Leibler divergence
kriging, see Gaussian process
Kullback-Leibler divergence, 55, 451, 468, 505

Lagrange multiplier, 707
Lagrange, Joseph-Louis, 329
Lagrangian, 328, 332, 341, 708
laminar flow, 678
Laplace approximation, 213, 217, 278, 315, 354
Laplace, Pierre-Simon, 24
large margin, see margin
lasso, 145
latent class analysis, 444
latent trait model, 597
latent variable, 84, 364, 430, 559
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lattice diagram, 414, 611, 621, 629
LDS, see linear dynamical system
leapfrog discretization, 551
learning, 2
learning rate parameter, 240
least-mean-squares algorithm, 144
leave-one-out, 33
likelihood function, 22
likelihood weighted sampling, 534
linear discriminant, 181

Fisher, 186
linear dynamical system, 84, 635

inference, 638
linear independence, 696
linear regression, 138

EM, 448
mixture model, 667
variational, 486

linear smoother, 159
linear-Gaussian model, 87, 370
linearly separable, 179
link, 360
link function, 180, 213
Liouville’s Theorem, 550
LLE, see locally linear embedding
LMS algorithm, see least-mean-squares algorithm
local minimum, 237
local receptive field, 268
locally linear embedding, 596
location parameter, 118
log odds, 197
logic sampling, 525
logistic regression, 205, 336

Bayesian, 217, 498
mixture model, 670
multiclass, 209

logistic sigmoid, 114, 139, 197, 205, 220, 227, 495
logit function, 197
loopy belief propagation, 417
loss function, 41
loss matrix, 41
lossless data compression, 429
lossy data compression, 429
lower bound, 484

M step, see maximization step

machine learning, vii
macrostate, 51
Mahalanobis distance, 80
manifold, 38, 590, 595, 681
MAP, see maximum posterior
margin, 326, 327, 502

error, 334
soft, 332

marginal likelihood, 162, 165
marginal probability, 14
Markov blanket, 382, 384, 545
Markov boundary, see Markov blanket
Markov chain, 397, 539

first order, 607
homogeneous, 540, 608
second order, 608

Markov chain Monte Carlo, 537
Markov model, 607

homogeneous, 612
Markov network, see Markov random field
Markov random field, 84, 360, 383
max-sum algorithm, 411, 629
maximal clique, 385
maximal spanning tree, 416
maximization step, 437
maximum likelihood, 9, 23, 26, 116

Gaussian mixture, 432
singularities, 480
type 2, see evidence approximation

maximum margin, see margin
maximum posterior, 30, 441
MCMC, see Markov chain Monte Carlo
MDN, see mixture density network
MDS, see multidimensional scaling
mean, 24
mean field theory, 465
mean value theorem, 52
measure theory, 19
memory-based methods, 292
message passing, 396

pending message, 417
schedule, 417
variational, 491

Metropolis algorithm, 538
Metropolis-Hastings algorithm, 541
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microstate, 51
minimum risk, 44
Minkowski loss, 48
missing at random, 441, 579
missing data, 579
mixing coefficient, 111
mixture component, 111
mixture density network, 272, 673
mixture distribution, see mixture model
mixture model, 162, 423

conditional, 273, 666
linear regression, 667
logistic regression, 670
symmetries, 483

mixture of experts, 672
mixture of Gaussians, 110, 270, 273, 430
MLP, see multilayer perceptron
MNIST data, 677
model comparison, 6, 32, 161, 473, 483
model evidence, 161
model selection, 162
moment matching, 506, 510
momentum variable, 548
Monte Carlo EM algorithm, 536
Monte Carlo sampling, 24, 523
Moore-Penrose pseudo-inverse, see pseudo-inverse
moralization, 391, 401
MRF, see Markov random field
multidimensional scaling, 596
multilayer perceptron, 226, 229
multimodality, 272
multinomial distribution, 76, 114, 690
multiplicity, 51
mutual information, 55, 57

Nadaraya-Watson, see kernel regression
naive Bayes model, 46, 380
nats, 50
natural language modelling, 610
natural parameters, 113
nearest-neighbour methods, 124
neural network, 225

convolutional, 267
regularization, 256
relation to Gaussian process, 319

Newton-Raphson, 207, 317
node, 360
noiseless coding theorem, 50
nonidentifiability, 585
noninformative prior, 23, 117
nonparametric methods, 68, 120
normal distribution, see Gaussian
normal equations, 142
normal-gamma distribution, 101, 691
normal-Wishart distribution, 102, 475, 478, 691
normalized exponential, see softmax function
novelty detection, 44
ν-SVM, 334

object recognition, 366
observed variable, 364
Occam factor, 217
oil flow data, 34, 560, 568, 678
Old Faithful data, 110, 479, 484, 681
on-line learning, see sequential learning
one-versus-one classifier, 183, 339
one-versus-the-rest classifier, 182, 338
ordered over-relaxation, 545
Ornstein-Uhlenbeck process, 305
orthogonal least squares, 301
outlier, 44, 185, 212
outliers, 103
over-fitting, 6, 147, 434, 464
over-relaxation, 544

PAC learning, see probably approximately correct
PAC-Bayesian framework, 345
parameter shrinkage, 144
parent node, 361
particle filter, 645
partition function, 386, 554
Parzen estimator, see kernel density estimator
Parzen window, 123
pattern recognition, vii
PCA, see principal component analysis
pending message, 417
perceptron, 192

convergence theorem, 194
hardware, 196

perceptron criterion, 193
perfect map, 392
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periodic variable, 105
phase space, 549
photon noise, 680
plate, 363
polynomial curve fitting, 4, 362
polytree, 399
position variable, 548
positive definite covariance, 81
positive definite matrix, 701
positive semidefinite covariance, 81
positive semidefinite matrix, 701
posterior probability, 17
posterior step, 537
potential energy, 549
potential function, 386
power EP, 517
power method, 563
precision matrix, 85
precision parameter, 24
predictive distribution, 30, 156
preprocessing, 2
principal component analysis, 561, 572, 593

Bayesian, 580
EM algorithm, 577
Gibbs sampling, 583
mixture distribution, 595
physical analogy, 580

principal curve, 595
principal subspace, 561
principal surface, 596
prior, 17

conjugate, 68, 98, 117, 490
consistent, 257
improper, 118, 259, 472
noninformative, 23, 117

probabilistic graphical model, see graphical model
probabilistic PCA, 570
probability, 12

Bayesian, 21
classical, 21
density, 17
frequentist, 21
mass function, 19
prior, 45
product rule, 13, 14, 359

sum rule, 13, 14, 359
theory, 12

probably approximately correct, 344
probit function, 211, 219
probit regression, 210
product rule of probability, 13, 14, 359
proposal distribution, 528, 532, 538
protected conjugate gradients, 335
protein sequence, 610
pseudo-inverse, 142, 185
pseudo-random numbers, 526

quadratic discriminant, 199
quality parameter, 351

radial basis function, 292, 299
Rauch-Tung-Striebel equations, 637
regression, 3
regression function, 47, 95
regularization, 10

Tikhonov, 267
regularized least squares, 144
reinforcement learning, 3
reject option, 42, 45
rejection sampling, 528
relative entropy, 55
relevance vector, 348
relevance vector machine, 161, 345
responsibility, 112, 432, 477
ridge regression, 10
RMS error, see root-mean-square error
Robbins-Monro algorithm, 95
robot arm, 272
robustness, 103, 185
root node, 399
root-mean-square error, 6
Rosenblatt, Frank, 193
rotation invariance, 573, 585
RTS equations, see Rauch-Tung-Striebel equations
running intersection property, 416
RVM, see relevance vector machine

sample mean, 27
sample variance, 27
sampling-importance-resampling, 534
scale invariance, 119, 261
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scale parameter, 119
scaling factor, 627
Schwarz criterion, see Bayesian information crite-

rion
self-organizing map, 598
sequential data, 605
sequential estimation, 94
sequential gradient descent, 144, 240
sequential learning, 73, 143
sequential minimal optimization, 335
serial message passing schedule, 417
Shannon, Claude, 55
shared parameters, 368
shrinkage, 10
Shur complement, 87
sigmoid, see logistic sigmoid
simplex, 76
single-class support vector machine, 339
singular value decomposition, 143
sinusoidal data, 682
SIR, see sampling-importance-resampling
skip-layer connection, 229
slack variable, 331
slice sampling, 546
SMO, see sequential minimal optimization
smoother matrix, 159
smoothing parameter, 122
soft margin, 332
soft weight sharing, 269
softmax function, 115, 198, 236, 274, 356, 497
SOM, see self-organizing map
sparsity, 145, 347, 349, 582
sparsity parameter, 351
spectrogram, 606
speech recognition, 605, 610
sphereing, 568
spline functions, 139
standard deviation, 24
standardizing, 425, 567
state space model, 609

switching, 644
stationary kernel, 292
statistical bias, see bias
statistical independence, see independent variables

statistical learning theory, see computational learn-
ing theory, 326, 344

steepest descent, 240
Stirling’s approximation, 51
stochastic, 5
stochastic EM, 536
stochastic gradient descent, 144, 240
stochastic process, 305
stratified flow, 678
Student’s t-distribution, 102, 483, 691
subsampling, 268
sufficient statistics, 69, 75, 116
sum rule of probability, 13, 14, 359
sum-of-squares error, 5, 29, 184, 232, 662
sum-product algorithm, 399, 402

for hidden Markov model, 625
supervised learning, 3
support vector, 330
support vector machine, 225

for regression, 339
multiclass, 338

survival of the fittest, 646
SVD, see singular value decomposition
SVM, see support vector machine
switching hidden Markov model, 644
switching state space model, 644
synthetic data sets, 682

tail-to-tail path, 374
tangent distance, 265
tangent propagation, 262, 263
tapped delay line, 609
target vector, 2
test set, 2, 32
threshold parameter, 181
tied parameters, 368
Tikhonov regularization, 267
time warping, 615
tomography, 679
training, 2
training set, 2
transition probability, 540, 610
translation invariance, 118, 261
tree-reweighted message passing, 517
treewidth, 417
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trellis diagram, see lattice diagram
triangulated graph, 416
type 2 maximum likelihood, see evidence approxi-

mation

undetermined multiplier, see Lagrange multiplier
undirected graph, see Markov random field
uniform distribution, 692
uniform sampling, 534
uniquenesses, 584
unobserved variable, see latent variable
unsupervised learning, 3
utility function, 41

validation set, 11, 32
Vapnik-Chervonenkis dimension, 344
variance, 20, 24, 149
variational inference, 315, 462, 635

for Gaussian mixture, 474
for hidden Markov model, 625
local, 493

VC dimension, see Vapnik-Chervonenkis dimen-
sion

vector quantization, 429
vertex, see node
visualization, 3
Viterbi algorithm, 415, 629
von Mises distribution, 108, 693

wavelets, 139
weak learner, 657
weight decay, 10, 144, 257
weight parameter, 227
weight sharing, 268

soft, 269
weight vector, 181
weight-space symmetry, 231, 281
weighted least squares, 668
well-determined parameters, 170
whitening, 299, 568
Wishart distribution, 102, 693
within-class covariance, 189
Woodbury identity, 696
wrapped distribution, 110

Yellowstone National Park, 110, 681




